Reviewed by Michael Gill, B. Sc.
Image of MGH Institute of Health Professions in Boston, United States.
Phase-Based Progress Estimates
1
Effectiveness
1
Safety

Characterization Of Learningfor Aphasia

18+
All Sexes
Aphasia is an impairment in the expression or comprehension of language that results from stroke, traumatic brain injury or progressive neurological disease. Approximately two million people in the United States suffer from aphasia, which has profound impacts on quality of life, the ability to return to work and participation in life activities. Research has shown that speech-language therapy, the treatment for aphasia, can significantly improve people's ability to communicate. However, a major limitation in the field of aphasia rehabilitation is the lack of predictability in patients' response to therapy and the inability to tailor treatment to individuals. Currently, aphasia treatments are selected largely based on patient's language abilities and language deficits with little consideration of learning ability, which this study refers to as learning phenotype. Learning phenotype has been used to inform rehabilitation approaches in other domains but is not currently considered in aphasia. The overarching hypothesis of this work is that poor alignment of learning ability and language therapy limits progress for patients and presents a barrier to individualizing treatment. The objectives of the proposed study are to (1) determine the learning phenotype of individuals with aphasia, and (2) examine how lesion characteristics (size and location of damage to the brain), language ability and cognitive ability relate to learning ability. To accomplish objectives, investigators propose to measure implicit (observational) and explicit (rule-based) learning ability in people with aphasia via computer-based tasks. Regression models will be used to examine brain and behavioral factors that relate to learning ability.
Waitlist Available
Has No Placebo
MGH Institute of Health ProfessionsSofia Vallila-Rohter, PhD
25 Aphasia Clinical Trials Near Me
Top Hospitals for Aphasia Clinical Trials
Image of University of South Carolina in South Carolina.
University of South Carolina
Columbia
4Active Trials
5All Time Trials for Aphasia
2016First Aphasia Trial
Aphasia Clinical Trials by Phase of Trial
Phase < 1 Aphasia Clinical Trials
3Active Aphasia Clinical Trials
3Number of Unique Treatments
3Number of Active Locations
STARTTranscranial direct current stimulationSHAM rTMS
Aphasia Clinical Trials by Age Group
18+ Aphasia Clinical Trials
63Active Aphasia Clinical Trials
Real tDCSSentence trainingUnison speech (vs. solo)Cued picture-naming therapyCharacterization of learningLanguage Specific Attention TreatmentVisual Feedback TrainingSemantically-focused therapy tasks
Top Treatments for Aphasia Clinical Trials
Treatment Name
Active Aphasia Clinical Trials
All Time Trials for Aphasia
First Recorded Aphasia Trial
Active tDCS plus Speech-Language Therapy
2
3
2013
Real tDCS
1
4
2014
Sentence training
1
1
2021
Unison speech (vs. solo)
1
1
2018
Cued picture-naming therapy
1
1
2020

About The Author

Michael Gill preview

Michael Gill - B. Sc.

First Published: October 5th, 2021

Last Reviewed: November 7th, 2022

Michael Gill holds a Bachelors of Science in Integrated Science and Mathematics from McMaster University. During his degree he devoted considerable time modeling the pharmacodynamics of promising drug candidates. Since then, he has leveraged this knowledge of the investigational new drug ecosystem to help his father navigate clinical trials for multiple myeloma, an experience which prompted him to co-found Power Life Sciences: a company that helps patients access randomized controlled trials.

References1 Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000 Sep 15;527 Pt 3:633-9. https://pubmed.ncbi.nlm.nih.gov/109905472 McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):263-9. doi: 10.1016/j.jalz.2011.03.005. Epub 2011 Apr 21. https://pubmed.ncbi.nlm.nih.gov/215142503 Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007 May 30;72(4-6):208-14. Epub 2007 Jan 24. https://pubmed.ncbi.nlm.nih.gov/174522834 Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007 May 30;72(4-6):208-14. Epub 2007 Jan 24. https://pubmed.ncbi.nlm.nih.gov/174522835 Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Flöel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, Miniussi C, Miranda PC, Moliadze V, Nitsche MA, Nowak R, Padberg F, Pascual-Leone A, Poppendieck W, Priori A, Rossi S, Rossini PM, Rothwell J, Rueger MA, Ruffini G, Schellhorn K, Siebner HR, Ugawa Y, Wexler A, Ziemann U, Hallett M, Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017 Sep;128(9):1774-1809. doi: 10.1016/j.clinph.2017.06.001. Epub 2017 Jun 19. Review. https://pubmed.ncbi.nlm.nih.gov/287098806 Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001 Nov 27;57(10):1899-901. https://pubmed.ncbi.nlm.nih.gov/117232867 Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, Mourdoukoutas AP, Kronberg G, Truong D, Boggio P, Brunoni AR, Charvet L, Fregni F, Fritsch B, Gillick B, Hamilton RH, Hampstead BM, Jankord R, Kirton A, Knotkova H, Liebetanz D, Liu A, Loo C, Nitsche MA, Reis J, Richardson JD, Rotenberg A, Turkeltaub PE, Woods AJ. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016 Sep-Oct;9(5):641-661. doi: 10.1016/j.brs.2016.06.004. Epub 2016 Jun 15. Review. https://pubmed.ncbi.nlm.nih.gov/273728458 Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology. 2005 Mar 8;64(5):872-5. https://pubmed.ncbi.nlm.nih.gov/157534259 Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000 Sep 15;527 Pt 3(Pt 3):633-9. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x. https://pubmed.ncbi.nlm.nih.gov/1099054710 Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006 Apr;117(4):845-50. Epub 2006 Jan 19. https://pubmed.ncbi.nlm.nih.gov/16427357