Glioblastoma

Los Angeles, CA

83 Glioblastoma Trials near Los Angeles, CA

Power is an online platform that helps thousands of Glioblastoma patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
This is a multicenter, two-arm, randomized, double-blind, placebo-controlled study of Optune® (Tumor Treating Fields at 200 kHz) together with maintenance Temozolomide (TMZ) chemotherapy agent and pembrolizumab compared to Optune® together with maintenance TMZ and placebo in newly diagnosed Glioblastoma (GBM) patients. The primary objective of the study is to evaluate the Overall Survival (OS).
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

741 Participants Needed

This phase III trial compares pH weighted chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI)-based surgical resections to standard of care surgical resections for the treatment of patients with glioblastoma. Standard of care therapy for glioblastoma is surgery to remove tumor tissue that enhances on standard MRI imaging, however, it has been shown that significant tumor burden exists in the region around the tumor tissue that does not enhance with standard MRI. MRI is a procedure in which radio waves and a powerful magnet linked to a computer are used to create detailed pictures of areas inside the body. These pictures can show the difference between normal and tumor tissue. CEST MRI is a technique that uses differences in the tissue environment, like protein concentration or intracellular pH, to generate contrast differences. CEST MRI may identify tumor tissue that does not enhance with standard of care MRI. PH weighted CEST MRI based surgical resection may be more effective compared to standard of care surgical resection in treating patients with glioblastoma.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Phase 3

60 Participants Needed

This trial is testing various treatments for patients with newly diagnosed or returning brain cancer. It adjusts treatments based on how well patients are doing to find the most effective options. The goal is to improve survival rates by matching the best treatments to specific patient types.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2, 3

1030 Participants Needed

This randomized phase II/III trial studies how well temozolomide and veliparib work compared to temozolomide alone in treating patients with newly diagnosed glioblastoma multiforme. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether temozolomide is more effective with or without veliparib in treating glioblastoma multiforme.
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2, 3

447 Participants Needed

This trial tests if adding GammaTile radiation therapy to standard treatment can improve outcomes for patients with newly diagnosed GBM. GammaTile delivers quick, direct radiation to the tumor, which may help control the tumor better and improve survival rates.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 4

61 Participants Needed

This is a multicenter, open-label study of DB107-RRV (formerly Toca 511) and DB107-FC (formerly Toca FC) when administered following surgical resection in newly diagnosed High Grade Glioma (HGG) patients. The study is designed to evaluate whether treatment with DB107-RRV in combination with DB107-FC when added to standard of care provides clinical benefit to newly diagnosed HGG when compared to historical performance previously determined in well controlled clinical trials published in the peer reviewed literature. This study is going to be conducted in newly diagnosed HGG patients receiving with maximum surgical resection treatment followed by radiation and temozolomide treatment using the established Stupp Protocol for O6-methylguanine-DNA methyl-transferase (MGMT) methylated patients or radiation therapy for MGMT unmethylated patients.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2

70 Participants Needed

This trial studies how well dabrafenib and trametinib work after radiation therapy in children and young adults with a specific type of brain tumor. These drugs help stop tumor growth by blocking signals that tell the cells to multiply. Dabrafenib has been developed and tested extensively for a specific type of skin cancer, showing effectiveness both alone and when used with trametinib.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:3 - 25

58 Participants Needed

This phase II trial studies how well veliparib, radiation therapy, and temozolomide work in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations. Poly adenosine diphosphate (ADP) ribose polymerases (PARPs) are proteins that help repair DNA mutations. PARP inhibitors, such as veliparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving veliparib, radiation therapy, and temozolomide may work better in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations compared to radiation therapy and temozolomide alone.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:3 - 25

38 Participants Needed

Olaparib for Advanced Cancer

Los Angeles, California
This phase II trial studies how well olaparib works in treating patients with glioma, cholangiocarcinoma, or solid tumors with IDH1 or IDH2 mutations that has spread from where it first started (primary site) to other places in the body (metastatic) and that does not respond to treatment (refractory). Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

145 Participants Needed

ACP-196 for Glioblastoma

Los Angeles, California
A Phase 1b/2, Multicenter, Open-Label Study of ACP-196 in Subjects with Recurrent Glioblastoma Multiforme (GBM)
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2

24 Participants Needed

This randomized phase II trial studies how well dose-escalated photon intensity-modulated radiation therapy (IMRT) or proton beam radiation therapy works compared with standard-dose radiation therapy when given with temozolomide in patients with newly diagnosed glioblastoma. Radiation therapy uses high-energy x-rays and other types of radiation to kill tumor cells and shrink tumors. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Drugs, such as temozolomide, may make tumor cells more sensitive to radiation therapy. It is not yet known whether dose-escalated photon IMRT or proton beam radiation therapy is more effective than standard-dose radiation therapy with temozolomide in treating glioblastoma.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

606 Participants Needed

Activated T Cells for Brain Cancer

Los Angeles, California
This trial is testing a treatment where a patient's own immune cells are enhanced to better fight cancer. It aims to find out if this treatment is safe and how well it works for cancer patients.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Phase 1

10 Participants Needed

Current standard of care therapy and all FDA approved adjuvant therapy for glioblastoma continue to provide less than 12 months of progression free survival (PFS) and less than 24 months of overall survival (OS). There is an extreme need for any novel therapy against glioblastoma that increases progression free survival and overall survival in patients diagnosed with this invasive form of cancer. A significant reason for such a poor prognosis is the infiltrative nature of this tumor in non-enhancing regions (NE) beyond the central contrast-enhancing (CE) portion of tumor, which is difficult to visualize and treat with surgical, medical, or radiotherapeutic means. Since tumor cells exhibit abnormal metabolic behavior leading to extracellular acidification, we theorize a newly developed pH-sensitive MRI technique called amine chemical exchange saturation transfer echoplanar imaging (CEST-EPI) may identify infiltrating NE tumor beyond what is clear on standard MRI with gadolinium contrast. This phase I safety study will use use intraoperative CEST-EPI guided resections in glioblastoma at increasing distances from areas of CE tumor to test whether this technique is safe and can remove additional areas of infiltrative NE tumor. The primary objective of this study is to assess the safety of pH-sensitive amine CEST-EPI guided resections for glioblastoma.The secondary objectives of this study include: 1. A preliminary efficacy analysis of CEST-EPI guided resections in extending progression free and overall survival. 2. To confirm that resected tissue obtained from pH-sensitive amine CEST-EPI guided resections contain infiltrating NE tumor. The primary endpoint for this study will be safety of resecting "CEST positive", acidic regions within T2 hyperintense regions of glioblastoma thought to contain active NE tumor at increasing distances from contrast enhancing tumor with development of a recommended maximal tolerated resection. 1. At the maximal tolerated resection, a preliminary efficacy study with endpoints of progression free survival (as defined by RANO Resect 2.0) 1 and overall survival. 2. Quantitation of infilitrating tumor burden on CEST-EPI resected tissue using immunohistochemical staining. 12 patients up to 24 patients based on resection limiting toxicities with potential expansion of up to 16 patients at the maximum tolerated resection. Inclusion Criteria: 1. Must be able to provide written informed consent 2. Male or female \> 18 years of age 3. Karnofsky Performance Scale (KPS) \> 70 (indicating good performance status). 4. Individuals with suspected, newly diagnosed or recurrent IDH wild type WHO IV glioblastoma (intraxial, expansile contrast-enhancing mass without evidence of metastatic disease. This will be reviewed by UCLA neuroradiology to only include patients with high likelihood of GBM) Exclusion Criteria: 1. Pediatric patients 2. Diagnostic uncertainty (reviewed by UCLA neuroradiology history extracranial malignancy or autoimmune disease) 3. Medical conditions that make patients a poor candidate for anesthesia and/or surgery (decision for surgery will follow standard pre-operative clearance guidelines and will not differ for this specific study from standard of care treatment plan) 4. Involvement of eloquent areas (as defined by MRI signal clearly involving areas that would lead to a qualifying neurologic deficit as defined in surgical limiting toxicity - this will specifically include: 1) primary motor cortex, 2) primary sensory cortex, 3) sensorimotor fibers as defined on pre-operative diffusion tensor imaging, 4) primary language areas (Broca, Wernicke), 5) arcuate fasiculus as defined on pre-operative diffusion tensor imaging Pre-operative: Standard of care pre-operative MRI including perfusion and pH-weighted amine CEST-EPI (which will add up to 15 minutes of scan time) for a single pre-operative exam prior to surgery. Surgery: 1 day (subjects to be admitted to the hospital) Follow-up: inpatient stay (1-3 days), 2 week clinical assessment (outpatient post-op clinic visit). MRI and clinical assessment at 4 weeks (end of resection limited toxicity window). Following this, there will be standard of care follow up with MRI and clinical assessment starting at 8 weeks +/- 4 weeks (per RANO 2.0). 1 Total study duration for recruitment, enrollment, and study completion of all subjects is up to 2 years. Single-arm, surgical resection escalation safety trial with a preliminary efficacy study at the maximal tolerated resection This safety evaluation will mimic a phase 1 dose escalation safety study using a rule based approach on based on a i3+3 design.2 Using standard of care resection of contrast enhancement as the baseline, we will begin with 3 subjects with maximal resection + "CEST positive" areas 0.7 cm from the contrast enhancing boundary within areas of T2 hyperintensity. If there is not \> 1 pre-determined resection limiting toxicity (RLT, defined below) in this cohort, the r
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Phase 1

18 Participants Needed

[177Lu]Lu-NeoB for Glioblastoma

Los Angeles, California
This study will investigate different doses of \[177Lu\]Lu-NeoB in combination with RT and TMZ in participants with newly diagnosed glioblastoma, with methylated or unmethylated promoter, to assess the safety and efficacy of \[177Lu\]Lu-NeoB in combination with the SoC and in recurrent glioblastoma as single agent, to identify the recommended dose and to also explore the safety of the PET imaging agent \[68Ga\]Ga-NeoB and characterize its uptake in the tumor area.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

48 Participants Needed

This trial studies the effects of nivolumab, an immunotherapy drug, in children and young adults with severe brain cancer that has returned or worsened. The drug helps the immune system fight the cancer and may prevent it from growing.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1
Age:6 - 25

20 Participants Needed

This trial studies the safety and best dose of BGB-290 and temozolomide in treating young people with a specific type of brain tumor. BGB-290 blocks enzymes needed for tumor growth, while temozolomide kills or stops cancer cells from growing. The goal is to find out if this combination works better for these patients.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1
Age:13 - 25

78 Participants Needed

RO7428731 for Glioblastoma

Los Angeles, California
This trial tests a new drug, RO7428731, for safety and effectiveness in patients with a specific type of brain cancer (glioblastoma) that has a particular mutation. The drug works by targeting and binding to the mutated cancer cells to stop their growth. This mutation is common in glioblastoma and makes the cancer grow faster and resist standard treatments.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

36 Participants Needed

Enrolled subjects will be placed on a 16-week ketogenic diet (subject specific as prescribed by RD) while receiving standard of care cancer treatment (Radiation + Temozolomide). Study dietitians will create personalized meal plans for each patient with the goal of achieving and maintaining protocol defined metabolic ketosis. Subjects will be monitored for safety, nutrition, quality of life, and standard of care tumor assessments over the course of the study.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

21 Participants Needed

Navtemadlin for Brain Cancer

Los Angeles, California
This phase I trial studies the side effects and best dose of navtemadlin in treating patients with glioblastoma (brain cancer) that is newly diagnosed or has come back (recurrent). Navtemadlin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

32 Participants Needed

To test the effectiveness and safety of Optune® given concomitantly with radiation therapy (RT) and temozolomide (TMZ) in newly diagnosed GBM patients, compared to radiation therapy and temozolomide alone. In both arms, Optune® and maintenance temozolomide are continued following radiation therapy.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

982 Participants Needed

Why Other Patients Applied

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58
This study is to determine if an oral drug called Ramipril can lower the chance of memory loss in patients with glioblastoma getting chemoradiation. Patients will take Ramipril during chemoradiation and continue until 4 months post-treatment. Memory loss will be assessed using several neurocognitive tests throughout the duration of the study.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting

75 Participants Needed

This phase II trial compares the safety, side effects and effectiveness of anti-lag-3 (relatlimab) and anti-PD-1 blockade (nivolumab) to standard of care lomustine for the treatment of patients with glioblastoma that has come back after a period of improvement (recurrent). Relatlimab and nivolumab are monoclonal antibodies that may interfere with the ability of tumor cells to grow and spread. Lomustine is a chemotherapy drug and in a class of medications called alkylating agents. It damages the cell's deoxyribonucleic acid (DNA) and may kill cancer cells. Relatlimab and nivolumab may be safe, tolerable, and/or effective compared to standard of care lomustine in treating patients with recurrent glioblastoma.
No Placebo Group

Trial Details

Trial Status:Recruiting

184 Participants Needed

This trial tests the safety and effectiveness of combining selinexor with radiation therapy in children and young adults with aggressive brain tumors. Selinexor is a drug that blocks a protein to stop cancer cells from growing. The study aims to find the best dose and see if this combination can shrink tumors.
No Placebo Group

Trial Details

Trial Status:Recruiting
Age:12 - 21

210 Participants Needed

This trial tests the safety and best dose of adavosertib combined with radiation and temozolomide for treating glioblastoma. Adavosertib blocks enzymes needed for tumor growth, while radiation and temozolomide kill cancer cells and stop them from growing. The study aims to find the most effective dose and understand how well this combination works for patients with newly diagnosed or recurrent glioblastoma.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting

74 Participants Needed

This phase III trial compares the effect of adding lomustine to standard chemotherapy with temozolomide and radiation therapy versus temozolomide and radiation therapy alone in shrinking or stabilizing newly diagnosed MGMT methylated glioblastoma. MGMT methylated tumors are more likely to respond to temozolomide chemotherapy. Temozolomide is in a class of medications called alkylating agents. It works by damaging the cell's DNA and may kill tumor cells and slow down or stop tumor growth. Lomustine is a chemotherapy drug and in a class of medications called alkylating agents. It damages the cell's DNA and may kill tumor cells. Radiation therapy uses high energy x-ray photons to kill tumor cells and shrink tumors. Adding lomustine to standard chemotherapy with temozolomide and radiation therapy may shrink or stabilize glioblastoma.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

306 Participants Needed

This trial tests a combination of tocilizumab, atezolizumab, and precise radiation therapy in patients with recurrent glioblastoma. Tocilizumab reduces inflammation, atezolizumab boosts the immune system, and the radiation targets the tumor. The goal is to make the tumor more responsive to treatment and improve patient outcomes.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

53 Participants Needed

NGM707 + Pembrolizumab for Cancer

Los Angeles, California
This trial is testing a new drug called NGM707, both by itself and with another drug, Pembrolizumab. It targets patients with very advanced or spreading solid tumors. The treatment aims to boost the immune system to better fight cancer.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2

179 Participants Needed

This phase II/III trial compares the usual treatment with radiation therapy and temozolomide to radiation therapy in combination with immunotherapy with ipilimumab and nivolumab in treating patients with newly diagnosed MGMT unmethylated glioblastoma. Radiation therapy uses high energy photons to kill tumor and shrink tumors. Chemotherapy drugs, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Temozolomide, may not work as well for the treatment of tumors that have the unmethylated MGMT. Immunotherapy with monoclonal antibodies called immune checkpoint inhibitors, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is possible that immune checkpoint inhibitors may work better at time of first diagnosis as opposed to when tumor comes back. Giving radiation therapy with ipilimumab and nivolumab may lengthen the time without brain tumor returning or growing and may extend patients' life compared to usual treatment with radiation therapy and temozolomide.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2, 3

159 Participants Needed

This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating patients with malignant gliomas. Drugs used in chemotherapy, such as vorinostat and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug. Giving vorinostat together with temozolomide may kill more tumor cells.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

83 Participants Needed

Fimepinostat for Brain Cancer

Los Angeles, California
This trial studies how well fimepinostat works in treating patients with newly diagnosed diffuse intrinsic pontine glioma, or medulloblastoma, or high-grade glioma that have come back. Fimepinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Early Phase 1
Age:3 - 39

30 Participants Needed

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Glioblastoma clinical trials in Los Angeles, CA pay?
Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.
How do Glioblastoma clinical trials in Los Angeles, CA work?
After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Glioblastoma trials in Los Angeles, CA 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length in Los Angeles, CA for Glioblastoma is 12 months.
How do I participate in a study as a "healthy volunteer"?
Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility in Los Angeles, CA several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.
What does the "phase" of a clinical trial mean?
The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.
Do I need to be insured to participate in a Glioblastoma medical study in Los Angeles, CA ?
Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.
What are the newest Glioblastoma clinical trials in Los Angeles, CA ?
Most recently, we added Activated T Cells for Brain Cancer, CAR T-Cell Therapy for Brain Tumor and MRI-Guided Surgery for Glioblastoma to the Power online platform.
Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security