Spinal Cord Clinical Trials 2022

Browse 194 Spinal Cord Medical Studies Across 154 Cities

7 Phase 3 Trial · 420 Spinal Cord Clinics

Reviewed by Michael Gill, B. Sc.
Phase-Based Progress Estimates
1
Effectiveness
1
Safety

One Bout Of Moderate-intensity Sub-maximal Aerobic Exercisefor Spinal Cord Injuries

Buffalo, NY
18 - 65
All Sexes
The aims of this proposal are to: 1) investigate whether individuals with spinal cord injury (SCI) demonstrate cardiac autonomic, cerebrovascular, and cognitive dysfunctions compared to non-injured age- and sex-matched controls in the following conditions: supine rest and head-up tilt/face-cooling test; 2) examine if autonomic completeness/ incompleteness, physical activity, and psychological distress are predictors for dysfunctions during supine rest and head-up tilt/face cooling conditions in SCI individuals; 3) examine if one bout of moderate-intensity aerobic exercise temporarily improves cardiac autonomic and cerebrovascular functions and thereby improves cognition when in supine rest and head- up tilt/face cooling conditions. The study will include an initial visit and an experimental visit to our lab. Three groups of participants will be included in this study: Group 1, SCI with acute exercise; group 2, SCI with rest-control; and group 3, age- and sex-matched non-injured individuals. Cardiovascular variables, such as heart rate variability, blood pressure variability, and cerebrovascular variables, such as cerebral blood flow velocity and oxygenated hemoglobin, and cognitive performance will be examined. The investigator hypothesizes that individuals with SCI will have impaired cardiac autonomic, cerebrovascular, and cognitive functions compared to the non-injured controls, and an acute exercise can improve those functions. Autonomic completeness/incompleteness, physical activity, and psychological distress are significant factors that predict cardiac autonomic, cerebrovascular, and cognitive functions in individuals with SCI.
Waitlist Available
Has No Placebo
Phase-Based Progress Estimates
1
Effectiveness
1
Safety

Extracorporeal Shockwave Therapyfor Quadriplegia

West Orange, NJ
18+
All Sexes
People with spinal cord injury (SCI) experience a host of secondary complications that can impact their quality of life and functional independence. One of the more prevalent complications is spasticity, which occurs in response to spinal cord damage and the resulting disruption of motor pathways. Common symptoms include spasms and stiffness, and can occur more than once per hour in many people with SCI. Spasticity can have a negative impact over many quality of life domains, including loss of functional independence, activity limitations, and even employment. Its impact on health domains is also pronounced, with many people who have spasticity reporting mood disorders, depression, pain, sleep disturbances, and contractures. Spasticity can interfere with post-injury rehabilitation and lead to hospitalization. There are many treatments for spasticity in this population. However, many do not have long-term efficacy, and, if they do, they are often pharmacological in nature and carry side effects that could limit function or affect health. The goal of this pilot, randomized-controlled study is to investigate the potential efficacy and safety of a non-invasive treatment with a low side effect profile, extracorporeal shockwave therapy (ESWT). ESWT has shown some benefits in people with post-stroke spasticity with no long term side effects. Thirty individuals with chronic, traumatic SCI will be recruited. Fifteen will be provided with ESWT while the other fifteen will be given a sham treatment. Clinical and self-report measures of spasticity and its impact on quality of life will be collected, as well as quantitative ultrasound measures of muscle architecture and stiffness. The ultimate goal of this pilot project is to collect the data necessary to apply for a larger randomized-controlled trial. Conducting a larger trial will allow for a more powerful estimation of safety and efficacy of ESWT as a treatment for spasticity in people with SCI.
Recruiting
Immunotherapy
Phase-Based Progress Estimates
1
Effectiveness
1
Safety

Clemastine Fumaratefor Multiple Sclerosis

San Francisco, CA
18 - 65
All Sexes
The clinical trial is intended to assess for clinical evidence of Clemastine Fumarate as a myelin repair therapy in patients with chronic inflammatory injury-causing demyelination as measured by multi-parametric MRI assessments. No reparative therapies exist for the treatment of multiple sclerosis. Clemastine fumarate was identified along with a series of other antimuscarinic medications as a potential remyelinating agent using the micropillar screen (BIMA) developed at the University of California, San Francisco (UCSF). Following in vivo validation, an FDA IND exemption was granted to investigate clemastine for the treatment of multiple sclerosis in the context of chronic optic neuropathy. That pilot study was recently completed and is the first randomized control trial documenting efficacy for a putative remyelinating agent for the treatment of MS. The preselected primary efficacy endpoint (visual evoked potential) was met and a strong trend to benefit was seen for the principal secondary endpoint assessing function (low contrast visual acuity). That trial number was 13-11577. This study seeks to follow up on that study and examine clemastine fumarate's protective and reparative effects in the context of chronic demyelinating brain lesions as imaged by multi-parametric MRI assessments. The investigators will be assessing the effects of clemastine fumarate as a remyelinating therapy and assessing its effect on MRI metrics of chronic lesions found in patients with a confirmed diagnosis of relapsing-remitting multiple sclerosis. In addition to using conventional multi-parametric MRI assessments, this study will also evaluate a new MRI technique called Ultrashort Echo Time (UTE) MRI to assess the effects of clemastine fumarate as a remyelinating therapy of chronic lesions found in patients with a confirmed diagnosis of relapsing-remitting multiple sclerosis and compare it to the other assessments.
Phase 1 & 2
Waitlist Available
25 Spinal Cord Clinical Trials Near Me
Houston, TX
Buffalo, NY
West Orange, NJ
San Francisco, CA
More Trial Locations
An interactive map to display trial locations for The University of Texas Health Science Center at Houston, Department of Rehabilitation Sciences at University at Buffalo, Kessler Foundation, Sandler Neurosciences Building, Neurological Clinical Research Unit, and 36 more locations.
Most Popular References for Spinal Cord Clinical Trials
Frequency
Citation
Top Cities for Spinal Cord Clinical Trials
Which phases are most popular for spinal cord clinical trials?
Phase 3 Spinal Cord Clinical Trials
Clinical Trial
Began Recruiting Date
Phase
10/1/2021
Phase 2 & 3
Senior Friendly Spinal Cord Clinical Trials

About The Author

Michael Gill preview

Michael Gill - B. Sc.

First Published: October 1st, 2021

Last Reviewed: August 1st, 2022

Michael Gill holds a Bachelors of Science in Integrated Science and Mathematics from McMaster University. During his degree he devoted considerable time modeling the pharmacodynamics of promising drug candidates. Since then, he has leveraged this knowledge of the investigational new drug ecosystem to help his father navigate clinical trials for multiple myeloma, an experience which prompted him to co-found Power Life Sciences: a company that helps patients access randomized controlled trials.