Spinal Cord

Current Location

148 Spinal Cord Trials Near You

Power is an online platform that helps thousands of Spinal Cord patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
This trial tests a new therapy using mild electrical stimulation and exercises to help children with neck spinal cord injuries improve their arm and hand movements. The goal is to make it easier for these children to play and do everyday tasks. This approach has been shown to increase independence and reduce the need for help and special equipment in children and adolescents with spinal cord injuries.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:4 - 18

10 Participants Needed

The goal of this study is to assess the function of the lungs and the muscles are used to breathe after individuals receive respiratory training, spinal cord stimulation, a combination of respiratory training and stimulation, a combination of arm training and stimulation, or a combination of trunk training and stimulation. The respiratory, arm, and trunk training combined with the spinal stimulation interventions are being used to activate the spinal cord below the level of injury. Investigators will be looking for changes in the function of the lungs and trunk muscles before, during, and after these task-specific and non-task-specific interventions for breathing to determine which one has the greatest effect. The results of this study may aid in the development of treatments to help individuals with spinal cord injuries that have impaired lung, arm, and trunk function.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

36 Participants Needed

The investigators propose to determine the electrode configurations that promote functional gains in the storage and voiding phases of lower urinary tract function as a result of activation of spinal circuits with spinal cord epidural stimulation in humans with spinal cord injury. The innovative approach and novel application of the Medtronic Specify 5-6-5 (16-electrode array) epidural device will allow the investigators to determine, with this early feasibility study, specific parameters of spinal cord epidural stimulation and approaches for bladder training needed for lower urinary tract function which will lay the groundwork for expedient translation of this promising technology to larger numbers of individuals with spinal cord injury who currently have limited treatment options. The current proposed study will increase the understanding of human lumbosacral spinal networks and guide the use of innovative therapeutic strategies that would be immediately available to not only improve the motor output during standing and walking but also ameliorate bladder dysfunction and thus improve quality of life in individuals after spinal cord injury.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

10 Participants Needed

The purpose of this study is to deepen our understanding of children who have a cervical spinal cord injury obtained in utero or at birth and examine the effects of tailored activity-based recovery training (ABRT) in combination with transcutaneous spinal cord stimulation (scTS). This is a within subjects, pre-post design study. Neurophysiological, sensorimotor, and autonomic assessments will occur pre, interim, and post 40 sessions of ABRT in conjunction with scTs.
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Unphased
Age:3 - 8

6 Participants Needed

This trial tests a combination of exercises and electrical stimulation to improve sitting and trunk control in children with severe spinal injuries. It targets children aged 3-12 who cannot walk due to their injuries. The treatment aims to strengthen muscles and activate nerves to improve posture and control.
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Unphased
Age:3 - 12

12 Participants Needed

This study will determine the level of functional gain, below the injury for voluntary control of movements, and recovery standing and stepping function as a result of activation of spinal circuits with scES in humans with severe paralysis. Training will consist of practicing stepping, standing and voluntary movements in the presence of specific scES configurations designed specific for stepping (Step-scES), specific for standing (Stand-scES) and for the voluntary movements of the legs and trunk (Vol-scES). Ability to step, stand, move voluntarily, as well as cardiovascular, respiratory, bladder, bowel and sexual function will be assessed in these individuals with chronic severe spinal cord injury.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

16 Participants Needed

This trial aims to test if electrical stimulation through the skin can help children with severe spinal cord injuries improve their ability to move and walk. The study will involve 8 children who cannot walk due to their injuries. Researchers hope that this treatment can reactivate the nerves in the spinal cord to help these children regain some movement. Electrical stimulation has been studied for its potential to improve movement and posture in individuals with spinal cord injuries.
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Unphased
Age:4 - 12

8 Participants Needed

Respiratory complications are among the leading causes of death in patients with chronic spinal cord injury (SCI). Our previous work showed that pulmonary function can be improved by using our original respiratory training method. However, the effectiveness of this intervention is limited due to the disruption of brain-spinal connections and consequently lowered spinal cord activity below the injury level. Our recent studies showed that electrical stimulation of the spinal cord below the level of injury leads to increased ventilation which indicates activation of the spinal cord structures related to respiration. These findings indicate that spinal cord stimulation can be a promising therapeutic additive to the treatment. The goal of this study is to justify the establishment of a new direction in rehabilitation for patients with SCI by using a non-invasive spinal cord stimulation in combination with respiratory training. Our aims are: 1) to evaluate the effects of such stimulation applied to the injured spinal cord on pulmonary function and respiratory muscle activity, and 2) to evaluate the effectiveness and therapeutic mechanisms of the spinal cord stimulation combined with respiratory training. Thirty-six individuals with chronic SCI will be recruited and assigned to three groups to receive respiratory training or spinal cord stimulation alone or a combination of them. All participants will be tested before and after cycles of experimental procedures with/or without stimulation. Our hypotheses will be confirmed if the respiratory training combined with spinal cord stimulation results in the most enhanced positive effects.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

36 Participants Needed

This study will incorporate critical cross viscero-visceral intersystem interactions to 1) investigate in a controlled laboratory setting and then with mobile at-home monitoring the extent, severity, and frequency of occurrence of autonomic dysreflexia with respect to daily bladder and bowel function, in conjunction with identifying potential underlying mechanisms by examining urinary biomarkers for several specific vasoactive hormones, and 2) to regulate cardiovascular function therapeutically as part of bladder and bowel management using spinal cord epidural stimulation.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

70 Participants Needed

This study explores the use of multifunctional, non-invasive spinal cord transcutaneous stimulation (scTS) to address axial motor symptoms, particularly gait dysfunction, in Parkinson's disease (PD). These symptoms, resistant to levodopa and inadequately managed by deep brain stimulation (DBS), arise from maladaptive spinal network changes. A non-invasive approach like scTS could overcome limitations associated with invasive spinal cord stimulation (SCS), which requires surgical implantation and lacks adaptability in stimulation site adjustments. Gait dysfunction in PD stems from disrupted interactions between spinal and supraspinal networks. scTS provides a non-invasive alternative, shown to enhance locomotor functions in conditions such as spinal cord injury, stroke, and cerebral palsy. This study hypothesizes that scTS applied at multiple spinal levels-cervical (C3-C4), thoracic (T11-T12), and lumbar (L1, L2-L3)-can synergistically activate locomotor central pattern generators (CPGs) and improve gait and postural control in PD. Additionally, it is hypothesized that proprioceptive input, combined with scTS, can counteract disruptions in spinal networks and restore voluntary movement. The primary goal is to evaluate the effects of scTS on stepping performance, postural control, and locomotor recovery in PD. Specific objectives include: 1. Enhancing Locomotor Networks * Determine optimal scTS parameters for inducing rhythmic stepping in PD patients. * Assess interactions between spinal and supraspinal networks during imagined stepping under scTS in a gravity-neutral setting. 2. Improving Postural Networks o Evaluate the effectiveness of scTS in restoring postural control and integrating postural-locomotor functions. 3. Facilitating Neuroplasticity for Movement Recovery o Combine scTS with activity-based recovery training to promote adaptive plasticity in spinal and cortical networks, reducing freezing of gait (FOG). The research will measure scTS's capacity to generate coordinated stepping and postural movements, integrate proprioceptive feedback, and induce long-term improvements in gait parameters. By targeting spinal locomotor and postural systems, scTS offers a novel, non-invasive approach to addressing gaps in the management of PD gait dysfunction. This work has the potential to significantly enhance the quality of life for individuals with PD, providing a safe, adaptable, and patient-centered therapeutic solution.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

20 Participants Needed

Neuropathic pain is a common complication following spinal cord injury (SCI) that significantly decreases quality of life. Treatment options are limited, and current treatments can have significant side effects. Those with SCI have identified a need for additional treatment options, particularly those that are not medications. Nabilone and an anti-inflammatory diet are two treatments that may provide pain relief while being better tolerated. This study will evaluate the benefits of these treatments for neuropathic pain after SCI. Study participants will receive either an anti-inflammatory diet or a placebo diet, and nabilone or a placebo for 4 weeks. It is expected that an anti-inflammatory diet and nabilone will significantly decrease pain intensity and improve function. The combination of both treatments together is expected to have a greater effect than each alone.
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:25+

140 Participants Needed

This trial tests if combining brain and muscle electrical stimulation helps people with partial spinal cord injuries walk better by improving muscle strength and coordination. Functional electrical stimulation (FES) has been used to assist walking and improve muscle strength in individuals with spinal cord injuries.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

14 Participants Needed

The investigators have spent the last decade uncovering unique metabolic and functional abnormalities in the brains of patients with spinal cord compression. Degenerative spinal cord compression represents a unique model of reversible spinal cord injury. In the investigator's previous work, they have demonstrated that cortical reorganization and recruitment is associated with metabolic changes in the brains of patients recovering from spinal cord compression and is correlated with recovery and improved neurological scores. The goal of this study is to combine a rigorous platform of clinical care that includes preoperative evaluation, surgery, and rehabilitation, with state of the art imaging techniques to demonstrate how rehabilitative therapy can increase brain plasticity and recovery of neurological function in patients with spinal cord injury. Neurological function will be carefully evaluated in two groups of patients, those receiving rehabilitation and those not receiving rehabilitation after spine surgery, and will be correlated with the results of advanced imaging.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

40 Participants Needed

Depression and chronic inflammation are common problems for people with spinal cord injury (SCI). Inflammation has been shown to influence depression which may make it an important treatment target. Previous studies have shown that changes in diet and exercise can affect this pathway and improve symptoms of depression in SCI patients. However, following these interventions long-term can be difficult. Intermittent fasting is a way of eating that involves fasting for a certain period of time and then eating normally. It has been shown to reduce inflammation and improve mood in able-bodied people, but its unknown if it can help people with depression and chronic inflammation, such as those with SCI. As intermittent fasting is a simple, easier to follow strategy than a diet it may be a more feasible long-term strategy. In addition, certain behavioural techniques such education, encouragement, and self monitoring may further help. This study aims to find out if intermittent fasting + support can be a helpful and simpler treatment for depression in SCI patients. In this study, 32 individuals with SCI who have depression will be invited to be randomly assigned to either try intermittent fasting + support or intermittent fasting alone. Both groups will fast for 16 hours per day for 8-weeks but only the supported group will receive behaviour techniques. Measurements will be taken prior to starting the interventions and after completing the interventions to assess for any changes in depression. Adherence, safety and inflammation will also be assessed. By the end of the study, the investigators hope that intermittent fasting can help safely reduce symptoms of depression and inflammation in people with SCI. The investigators also hope to find that additional behavior support further helps people adhere. This may provide a simple, easy to follow, and cost-free treatment for depression and inflammation in people with SCI.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased

32 Participants Needed

Spinal cord injury (SCI) has been shown to be associated with impairment to the autonomic nervous system in the form of reduced activity of a key nerve known as the vagus nerve. As the vagus nerve has an important role in regulating inflammation and is associated with depression, it may represent a key mechanism which contributes to chronic inflammation and depression following SCI. A technique known as transcutaneous auricular vagus nerve stimulation (taVNS) can stimulate the vagus nerve non-invasively through an electrode applied on the skin of the ear. This technique has been shown to effectively reduce inflammation and improve symptoms of depression in other populations without any serious adverse events. However, it has not been assessed in individuals with SCI. The primary objective of this study is to assess the efficacy of taVNS therapy for the treatment of inflammation and depression. Autonomic function as assessed by measures of heart rate variability (HRV) will also be assessed to quantify changes in vagal tone. The study will be conducted over a 2-year period, with 44 individuals with SCI and depression participating. Participants will be randomly assigned to receive either active taVNS or a placebo (sham) treatment over a 30-day period. The researchers will assess changes in depression symptoms, autonomic function (heart rate variability), and biomarkers related to inflammation at baseline and 30-days. Safety and adherence will also be evaluated to confirm the feasibility for long-term use. This study aims to explore a novel and non-invasive treatment strategy for depression in individuals with spinal cord injury. If taVNS is found to be safe, effective, and feasible for SCI patients, it could offer a simple, cost-effective way to address chronic inflammation and depression in this population.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

44 Participants Needed

This trial tests a training program called Skills on Wheels, which helps children with physical disabilities learn to use manual wheelchairs on their own. The goal is to make them more confident and safe in using their wheelchairs, and to improve their social skills and participation in activities.
No Placebo Group

Trial Details

Trial Status:Recruiting
Age:5 - 17

4 Participants Needed

The purpose of this study is to test a strategy to potentiate functional recovery of lower limb motor function in individuals with spinal cord injury (SCI). The FDA approved drug, Dalfampridine (4-AP). 4-AP will be used twice-daily in combination of Spike-timing-dependent plasticity (STDP) stimulation and STDP stimulation with limb training.

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2

27 Participants Needed

This trial is testing a new drug called NVG-291 to see if it can help people with spinal cord injuries. The study focuses on those with injuries that haven't fully healed. NVG-291 aims to improve nerve communication in the spinal cord, potentially leading to better movement and sensation.

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2

40 Participants Needed

Currently, there are a variety of approaches utilized in attempts to improve upper extremity function, including: traditional therapy, neuroprostheses, botulinum toxin injections, or surgical interventions. In addition, regenerative and restorative therapies, such as: epidural stimulation, functional electrical stimulation, and stem cell therapies, show promise in animal models, but are not ready for clinical translation. Subsequently, there is a clear need to develop new strategies that can stimulate spinal plasticity and strengthen existing synaptic connections in order to maximize the benefits of training paradigms. This study proposes the examine the effects of Acute Intermittent Hypoxia (AIH) in combination with upper extremity training, over the course of a month, to evaluate changes in upper extremity function, dexterity, and ability to complete activities of daily living. The use of acute intermittent hypoxia (AIH) has been demonstrated, through human and animal studies, to be an effective way of increasing spinal motor excitability and strengthening residual synaptic connectivity. AIH utilizes short duration (\<2 min) exposures to reduced oxygen levels (\~10% inspired oxygen), with alternating exposures to air with normal oxygen levels (\~21% inspired oxygen). Previous publications demonstrate that AIH is a safe and effective intervention to modify motor function in individual with chronic incomplete spinal cord injuries. The use of AIH has been shown to influence the activation in musculature, within 60-120 minutes of administration. In addition, when coupling AIH with overground gait training, an increase in functional endurance, as evaluated through the 6 minute walk test, and gait speed, as evaluated through the 10 meter walk test, were demonstrated. In addition, the use of hypoxic training has been studied in healthy individuals and athletes; however, literature examining the effect of a single bout of AIH on performance is limited.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Early Phase 1

58 Participants Needed

The purpose of this study is to test a strategy to potentiate functional recovery of lower limb motor function in individuals with spinal cord injury (SCI). The FDA approved drug, Dalfampridine (4-AP). 4-AP will be used in combination of Spike-timing-dependent plasticity (STDP) stimulation and STDP stimulation with limb training.

Trial Details

Trial Status:Recruiting
Trial Phase:Early Phase 1

44 Participants Needed

Why Other Patients Applied

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40
The purpose of this study is to examine interventions with paradigms involving upper and lower extremity cycling (A\&L cycling) with A\&L cycling with functional electrical stimulation (FES) (A\&L_FES group), A\&L cycling with FES and transcutaneous Spinal Cord Stimulation (A\&L_tSCS group), and control Body Weight Supported Treadmill Training (BWSTT) to potentially restore functional abilities (i.e., walking) in individuals with an incomplete spinal cord injury. The researchers hypothesize there will be improved walking function following these interventional groups.

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Unphased

40 Participants Needed

The purpose of this study is to evaluate if a specific type of additional walking therapy, called body weight supported treadmill training (BWSTT) affects walking ability following a traumatic spinal cord injury. Specifically, the study will look at whether starting BWSTT, which uses a body harness to support body weight while walking on a treadmill at different times within the first 6 months after the injury, makes a difference in how effective this therapy may be, While we know that the brain re-learns patterns following an injury, there has not been a lot of prior research evaluating how starting this type of walking therapy at specific times within the first 6 months after injury may impact any effectiveness of the additional therapy. The study will randomize participants into four groups: those who start this therapy within 60 days, within 3 months, within 6 months or who do not receive this additional research therapy. Randomization means that which group you will be in as part of this study is determined by chance, like the flip of a coin. The additional walking therapy for this research study, if you are randomized for one of the three groups who receives the additional therapy, will be given on top of (meaning in addition to) any standard of care therapies that you may be receiving at that time point after your injury.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:16 - 75

108 Participants Needed

The purpose of this research study is to learn more about the connections between the brain, nerves, and diaphragm after experiencing a cervical spinal cord injury (SCI).The main question it aims to answer is: Changes in respiratory function and recovery using stimulation and respiratory exercise training in spinal cord-injured individuals. Participants will complete a maximum of 55 study visits. They will be asked to complete about 40 treatment sessions which include multiple stimulation sessions over the scalp and neck, followed by about 60 minutes of respiratory training. Assessment sessions will be completed prior at baseline, after 20 sessions and after 40 sessions of study treatment.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

10 Participants Needed

The purpose of this study is to examine the ability of simultaneous motorized upper and lower extremity cycling training to regulate spinal movement patterns in order to potentially restore functional abilities (i.e., walking) in individuals with an incomplete spinal cord injury. The researchers hypothesize there will be improved walking function following motorized cycling.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

5 Participants Needed

The purpose of this study is to determine how combining bouts of low oxygen, transcutaneous spinal cord stimulation, and walking training may improve walking function for people with chronic spinal cord injury.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

60 Participants Needed

The goal of this research is to increase physical activity among individuals with a spinal cord injury (SCI) through a customized, interactive smartphone-based health app and e-coaching using three phases: (1) leading focus groups of potential app users and clinicians to gain information regarding health apps preferences for optimal consumer use, (2) conducting a usability study of the customized app to determine the quality and implement further changes for optimization, and (3) conducting a sequential multiple assignment randomized trial (SMART) to determine the most effective adaptive intervention to improve exercise adherence. A SMART trial will be used to determine when and how to adapt dosage, timing, and delivery to increase adherence and address low-response behaviors. In Stage-I, the investigators will compare outcomes among participants using a generic, non-interactive exercise app (Group 1) to a customized, interactive app that can gain information through frequent Ecological Momentary Assessments (EMA) that will be used to modify each participant's exercise programs (Group 2). After 12 weeks, participants who are not meeting the exercise guidelines at least 50% of the time will also be asked to participate in motivational interviewing-based e-coaching either two or four times per month in addition to their originally assigned intervention (Stage-II). By completing these three phases, this project addresses deficiencies in exercise levels and compliance by implementing an individualized exercise prescription, an adaptive intervention for low responders, a way to address barriers to exercise, and a free smartphone app for broad implementation.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

50 Participants Needed

In support of the long-term goal of developing new strategies to increase limb function after SCI, the objectives of this proposal are to: 1) Examine the behavioral and physiological effects of TESS on upper-limb muscles after cervical SCI; and 2) Maximize the recovery of reaching and grasping potential by using tailored TESS in a task-specific manner with motor training. Veterans with cervical spinal injuries and healthy volunteers will be recruited for this study.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

86 Participants Needed

A randomized, repeated measures comparative design study to compare use of a micro-processor controlled knee-ankle-foot orthosis vs. traditional care knee-ankle-foot-orthosis (KAFO) models following discharge from inpatient rehabilitation.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

30 Participants Needed

The overall objective of this project is to investigate the effectiveness of daily acute intermittent hypoxia therapy (dAIH), coupled with massed practice training, to improve upper-extremity function in individuals with chronic incomplete cervical SCI.

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

121 Participants Needed

Our goal is to enhance repeated exposure to acute intermittent hypoxia (rAIH)/training-induced aftereffects on upper and lower limb function recovery in humans with chronic spinal cord injury (SCI).

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

60 Participants Needed

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Spinal Cord clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Spinal Cord clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Spinal Cord trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Spinal Cord is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Spinal Cord medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Spinal Cord clinical trials?

Most recently, we added Arm and Leg Cycling for Spinal Cord Injury, Spinal Cord Stimulation for Phantom Limb Pain and Spinal Cord Stimulation for Healthy Adults to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security