Type Condition

Greenville, PA

119 Clinical Trials near Greenville, PA

Power is an online platform that helps thousands of patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
This phase III trial compares the effect of adding lomustine to standard chemotherapy with temozolomide and radiation therapy versus temozolomide and radiation therapy alone in shrinking or stabilizing newly diagnosed MGMT methylated glioblastoma. MGMT methylated tumors are more likely to respond to temozolomide chemotherapy. Temozolomide is in a class of medications called alkylating agents. It works by damaging the cell's DNA and may kill tumor cells and slow down or stop tumor growth. Lomustine is a chemotherapy drug and in a class of medications called alkylating agents. It damages the cell's DNA and may kill tumor cells. Radiation therapy uses high energy x-ray photons to kill tumor cells and shrink tumors. Adding lomustine to standard chemotherapy with temozolomide and radiation therapy may shrink or stabilize glioblastoma.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

306 Participants Needed

This phase III trial uses the Decipher risk score to guide therapy selection. Decipher score is based on the activity of 22 genes in prostate tumor and may predict how likely it is for recurrent prostate cancer to spread (metastasize) to other parts of the body. Decipher score in this study is used for patient selection and the two variations of treatment to be studied: intensification for higher Decipher score or de-intensification for low Decipher score. Patients with higher Decipher risk score will be assigned to the part of the study that compares the use of 6 months of the usual treatment (hormone therapy and radiation treatment) to the use of darolutamide plus the usual treatment (intensification). The purpose of this section of the study is to determine whether the additional drug can reduce the chance of cancer coming back and spreading in patients with higher Decipher score. The addition of darolutamide to the usual treatment may better control the cancer and prevent it from spreading. Alternatively, patients with low Decipher risk score will be assigned to the part of the study that compares the use of radiation treatment alone (de-intensification) to the usual approach (6 months of hormone therapy plus radiation). The purpose of this part of the study is to determine if radiation treatment alone is as effective compared to the usual treatment without affecting the chance of tumor coming back in patients with low Decipher score prostate cancer. Radiation therapy uses high energy to kill tumor cells and reduce the tumor size. Hormone therapy drugs such as darolutamide suppress or block the production or action of male hormones that play role in prostate cancer development. Effect of radiation treatment alone in patients with low Decipher score prostate cancer could be the same as the usual approach in stabilizing prostate cancer and preventing it from spreading, while avoiding the side effects associated with hormonal therapy.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Sex:Male

2050 Participants Needed

This phase III trial compares less intense hormone therapy and radiation therapy to usual hormone therapy and radiation therapy in treating patients with high risk prostate cancer and low gene risk score. This trial also compares more intense hormone therapy and radiation therapy to usual hormone therapy and radiation therapy in patients with high risk prostate cancer and high gene risk score. Apalutamide may help fight prostate cancer by blocking the use of androgen by the tumor cells. Radiation therapy uses high energy rays to kill tumor cells and shrink tumors. Giving a shorter hormone therapy treatment may work the same at controlling prostate cancer compared to the usual 24 month hormone therapy treatment in patients with low gene risk score. Adding apalutamide to the usual treatment may increase the length of time without prostate cancer spreading as compared to the usual treatment in patients with high gene risk score.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Sex:Male

2753 Participants Needed

This phase III trial compares the effect of adding surgery to a standard of care immunotherapy-based drug combination versus a standard of care immunotherapy-based drug combination alone in treating patients with kidney cancer that has spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as nivolumab, ipilimumab, pembrolizumab, and avelumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Axitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Surgery to remove the kidney, called a nephrectomy, is also considered standard of care; however, doctors who treat kidney cancer do not agree on its benefits. It is not yet known if the addition of surgery to an immunotherapy-based drug combination works better than an immunotherapy-based drug combination alone in treating patients with kidney cancer.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

364 Participants Needed

This phase III trial tests two questions by two separate comparisons of therapies. The first question is whether enhanced therapy (apalutamide in combination with abiraterone + prednisone) added to standard of care (prostate radiation therapy and short term androgen deprivation) is more effective compared to standard of care alone in patients with prostate cancer who experience biochemical recurrence (a rise in the blood level of prostate specific antigen \[PSA\] after surgical removal of the prostate cancer). A second question tests treatment in patients with biochemical recurrence who show prostate cancer spreading outside the pelvis (metastasis) by positron emission tomography (PET) imaging. In these patients, the benefit of adding metastasis-directed radiation to enhanced therapy (apalutamide in combination with abiraterone + prednisone) is tested. Diagnostic procedures, such as PET, may help doctors look for cancer that has spread to the pelvis. Androgens are hormones that may cause the growth of prostate cancer cells. Apalutamide may help fight prostate cancer by blocking the use of androgens by the tumor cells. Metastasis-directed targeted radiation therapy uses high energy rays to kill tumor cells and shrink tumors that have spread. This trial may help doctors determine if using PET results to deliver more tailored treatment (i.e., adding apalutamide, with or without targeted radiation therapy, to standard of care treatment) works better than standard of care treatment alone in patients with biochemical recurrence of prostate cancer.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Sex:Male

804 Participants Needed

This phase III trial studies magnetic resonance imaging (MRI) surveillance and prophylactic cranial irradiation (PCI) to see how well they work compared to MRI surveillance alone in treating patients with small cell lung cancer. MRI scans are used to monitor the possible spread of the cancer with an MRI machine over time. PCI is radiation therapy that is delivered to the brain in hopes of preventing spread of cancer into the brain. The use of brain MRI alone may reduce side effects of receiving PCI and prolong patients' lifespan. Monitoring with MRI scans alone (delaying radiation until the actual spread of the cancer) may be at least as good as the combination of PCI with MRI scans.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

668 Participants Needed

This phase III trial studies whether adding apalutamide to the usual treatment improves outcome in patients with lymph node positive prostate cancer after surgery. Radiation therapy uses high energy x-ray to kill tumor cells and shrink tumors. Androgens, or male sex hormones, can cause the growth of prostate cancer cells. Drugs, such as apalutamide, may help stop or reduce the growth of prostate cancer cell growth by blocking the attachment of androgen to its receptors on cancer cells, a mechanism similar to stopping the entrance of a key into its lock. Adding apalutamide to the usual hormone therapy and radiation therapy after surgery may stabilize prostate cancer and prevent it from spreading and extend time without disease spreading compared to the usual approach.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Sex:Male

586 Participants Needed

This phase II/III trial studies how well circulating tumor deoxyribonucleic acid (ctDNA) testing in the blood works in predicting treatment for patients with stage IIA colon cancer after surgery. ctDNA are circulating tumor cells that are shed by tumors into the blood. Finding ctDNA in the blood means that there is very likely some small amounts of cancer that remain after surgery. However, this cancer, if detected, cannot be found on other tests usually used to find cancer, as it is too small. Testing for ctDNA levels may help identify patients with colon cancer after surgery who do benefit, and those who do not benefit, from receiving chemotherapy.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2, 3

635 Participants Needed

This phase II/III trial studies how well a reduced dose of radiation therapy works with nivolumab compared to cisplatin in treating patients with human papillomavirus (HPV)-positive oropharyngeal cancer that is early in its growth and may not have spread to other parts of the body (early-stage), and is not associated with smoking. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Chemotherapy drugs, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial is being done to see if a reduced dose of radiation therapy and nivolumab works as well as standard dose radiation therapy and cisplatin in treating patients with oropharyngeal cancer.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2, 3

384 Participants Needed

This phase III trial studies how well chemotherapy and radiation therapy (chemoradiation) with or without atezolizumab works in treating patients with limited stage small cell lung cancer. Drugs used in chemotherapy, such as etoposide, cisplatin, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving chemoradiation with or without atezolizumab may work better in treating patients with limited stage small cell lung cancer.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

544 Participants Needed

This phase III trial studies how well chemotherapy and radiation therapy work with or without atezolizumab in treating patients with localized muscle invasive bladder cancer. Radiation therapy uses high energy rays to kill tumor cells and shrink tumors. Chemotherapy drugs, such as gemcitabine, cisplatin, fluorouracil and mitomycin-C, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy with radiation therapy may kill more tumor cells. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving atezolizumab with radiation therapy and chemotherapy may work better in treating patients with localized muscle invasive bladder cancer compared to radiation therapy and chemotherapy without atezolizumab.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

475 Participants Needed

Pembrolizumab for Skin Cancer

Farrell, Pennsylvania
This phase III trial studies how well pembrolizumab works compared to standard of care observation in treating patients with stage I-III Merkel cell cancer that has been completely removed by surgery (resected). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

280 Participants Needed

The purpose of this study is to compare the effects on low risk breast cancer receiving usual care that includes regional radiation therapy, with receiving no regional radiation therapy. Researchers want to see if not giving this type of radiation treatment works as well at preventing breast cancer from coming back.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:35+
Sex:Female

2140 Participants Needed

This phase II/III trial studies how well radiation therapy works when given together with cisplatin, docetaxel, cetuximab, and/or atezolizumab after surgery in treating patients with high-risk stage III-IV head and neck cancer the begins in the thin, flat cells (squamous cell). Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Drugs used in chemotherapy, such as cisplatin and docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Cetuximab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. The purpose of this study is to compare the usual treatment (radiation therapy with cisplatin chemotherapy) to using radiation therapy with docetaxel and cetuximab chemotherapy, and using the usual treatment plus an immunotherapy drug, atezolizumab.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2, 3

613 Participants Needed

This randomized phase III trial studies how well hypofractionated radiation therapy works in preventing recurrence in patients with stage IIa-IIIa cancer who have undergone mastectomy. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells that remain after surgery and have fewer side effects.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

897 Participants Needed

This phase II trial compares the use of pembrolizumab and radiation therapy to chemotherapy with cisplatin, gemcitabine, 5-fluorouracil or mitomycin-C and radiation therapy for the treatment of non-muscle invasive bladder cancer. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as cisplatin, gemcitabine, 5-fluorouracil or mitomycin-C, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Giving pembrolizumab with radiation may kill more tumor cells than chemotherapy with radiation therapy in patients with non-muscle invasive bladder cancer.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

160 Participants Needed

This phase II trial compares the effect of usual treatment of docetaxel chemotherapy plus trastuzumab, to ado-emtansine (T-DM1) in patients with HER2-postive salivary gland cancer that has come back (recurrent), that has spread from where it first started (primary site) to other places in the body, or cannot be removed by surgery (unresectable). This trial is also testing how well trastuzumab deruxtecan works in treating patients with HER2-low recurrent or metastatic salivary gland cancer. Trastuzumab is a form of targeted therapy because it works by attaching itself to specific molecules (receptors) on the surface of cancer cells, known as HER2 receptors. When trastuzumab attaches to HER2 receptors, the signals that tell the cells to grow are blocked and the cancer cell may be marked for destruction by body's immune system. Trastuzumab emtansine contains trastuzumab, linked to a chemotherapy drug called emtansine. Trastuzumab attaches to HER2 positive cancer cells in a targeted way and delivers emtansine to kill them. Trastuzumab deruxtecan is a monoclonal antibody called traztuzumab, linked to a chemotherapy drug called deruxtecan. Trastuzumab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as HER2 receptors and delivers deruxtecan to kill them. Docetaxel is in a class of medications called taxanes. It stops cancer cells from growing and dividing and may kill them. Trastuzumab emtansine may work better compared to usual treatment of chemotherapy with docetaxel and trastuzumab or trastuzumab deruxtecan in treating patients with recurrent, metastatic or unresectable salivary gland cancer.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

146 Participants Needed

This phase II trial tests whether the combination of nivolumab and ipilimumab is better than nivolumab alone to shrink tumors in patients with deficient mismatch repair system (dMMR) endometrial carcinoma that has come back after a period of time during which the cancer could not be detected (recurrent). Deoxyribonucleic acid (DNA) mismatch repair (MMR) is a system for recognizing and repairing damaged DNA. In 2-3% of endometrial cancers this may be due to a hereditary condition resulted from gene mutation called Lynch Syndrome (previously called hereditary nonpolyposis colorectal cancer or HNPCC). MMR deficient cells usually have many DNA mutations. Tumors that have evidence of mismatch repair deficiency tend to be more sensitive to immunotherapy. There is some evidence that nivolumab with ipilimumab can shrink or stabilize cancers with deficient mismatch repair system. However, it is not known whether this will happen in endometrial cancer; therefore, this study is designed to answer that question. Monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving nivolumab in combination with ipilimumab may be better than nivolumab alone in treating dMMR recurrent endometrial carcinoma.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Sex:Female

90 Participants Needed

This phase II trial compares the usual treatment of radiation therapy alone to using the study drug, relugolix, plus the usual radiation therapy in patients with castration-sensitive prostate cancer that has spread to limited other parts of the body (oligometastatic). Relugolix is in a class of medications called gonadotropin-releasing hormone (GnRH) receptor antagonists. It works by decreasing the amount of testosterone (a male hormone) produced by the body. It may stop the growth of cancer cells that need testosterone to grow. Radiation therapy uses high-energy x rays or protons to kill tumor cells. The addition of relugolix to the radiation may reduce the chance of oligometastatic prostate cancer spreading further.

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Sex:Male

194 Participants Needed

This phase II trial studies the effect of pembrolizumab alone compared to the usual approach (chemotherapy \[cisplatin and carboplatin\] plus radiation therapy) after surgery in treating patients with head and neck squamous cell carcinoma that has come back (recurrent) or patients with a second head and neck cancer that is not from metastasis (primary). Radiation therapy uses high energy radiation or protons to kill tumor cells and shrink tumors. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. Carboplatin is also in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of cancer cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab alone after surgery may work better than the usual approach in shrinking recurrent or primary head and neck squamous cell carcinoma.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

188 Participants Needed

Why Other Patients Applied

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50
This phase II trial studies how well lower-dose chemotherapy plus radiation (chemoradiation) therapy works in comparison to standard-dose chemoradiation in treating patients with early-stage anal cancer. Drugs used in chemotherapy, such as mitomycin, fluorouracil, and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving chemotherapy with radiation therapy may kill more tumor cells. This study may help doctors find out if lower-dose chemoradiation is as effective and has fewer side effects than standard-dose chemoradiation, which is the usual approach for treatment of this cancer type.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

252 Participants Needed

This phase II trial studies how well radiation therapy with or without olaparib works in treating patients with inflammatory breast cancer. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Olaparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. It is not yet known whether radiation therapy with or without olaparib may work better in treating patients with inflammatory breast cancer.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

300 Participants Needed

HY209gel for Eczema

Encino, California
This is a randomized, double-blind, placebo-controlled, multi-center, phase 2 study in patients with mild to moderate Atopic Dermatitis(AD), which consists of 2 parts.

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

210 Participants Needed

This phase II trial studies how well radiation therapy with or without apalutamide works in treating patients with prostate cancer that has come back (recurrent). Radiation therapy uses high energy x-ray to kill tumor cells and shrink tumors. Androgen can cause the growth of prostate cancer cells. Drugs, such as apalutamide, may lessen the amount of androgen made by the body. Giving radiation therapy and apalutamide may work better at treating prostate cancer compared to radiation therapy alone.

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Sex:Male

324 Participants Needed

This Phase III trial will examine the efficacy of computerized cognitive training methods on perceived cognitive impairment in breast cancer survivors.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

386 Participants Needed

This study is a randomized controlled trial at eight hospitals within the University of Pittsburgh Medical Center-UPMC system. The project will assess the efficacy of a clinical surveillance system augmented with near real-time predictive analytics to support a pharmacist-led intervention delivered to attending physicians (primary service) to reduce the progression and complications of drug-associated acute kidney injury (D-AKI) in hospitalized (non-ICU) adults.
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Unphased

625 Participants Needed

This phase III trial compares the addition of an immunotherapy drug (durvalumab) to usual chemotherapy versus usual chemotherapy alone in treating patients with MammaPrint High 2 Risk (MP2) stage II-III hormone receptor positive, HER2 negative breast cancer. Immunotherapy with monoclonal antibodies, such as durvalumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as paclitaxel, doxorubicin, and cyclophosphamide work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. There is some evidence from previous clinical trials that people who have a MammaPrint High 2 Risk result may be more likely to respond to chemotherapy and immunotherapy. Adding durvalumab to usual chemotherapy may be able to prevent the cancer from returning for patients with MP2 stage II-III hormone receptor positive, HER2 negative breast cancer.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

3680 Participants Needed

This phase III trial compares the effects of shorter chemotherapy (chemo)-immunotherapy without anthracyclines to usual chemo-immunotherapy for the treatment of early-stage triple negative breast cancer. Paclitaxel is in a class of medications called anti-microtubule agents. It stops cancer cells from growing and dividing and may kill them. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of cancer cells. Cyclophosphamide is in a class of medications called alkylating agents. It works by damaging the cell's deoxyribonucleic acid (DNA) and may kill cancer cells. It may also lower the body's immune response. Docetaxel is in a class of medications called taxanes. It stops cancer cells from growing and dividing and may kill them. Doxorubicin is an anthracycline chemotherapy drug that damages DNA and may kill cancer cells. Pembrolizumab may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Shorter treatment without anthracycline chemotherapy may work the same as the usual anthracycline chemotherapy treatment for early-stage triple negative breast cancer.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

2400 Participants Needed

The phase III trial compares the effect of pembrolizumab to observation for the treatment of patients with early-stage triple-negative breast cancer who achieved a pathologic complete response after preoperative chemotherapy in combination with pembrolizumab. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial may help researchers determine if observation will result in the same risk of cancer coming back as pembrolizumab after surgery in triple-negative breast cancer patients who achieve pathologic complete response after preoperative chemotherapy with pembrolizumab.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

1295 Participants Needed

This phase III trial compares the effect of modified fluorouracil, leucovorin calcium, oxaliplatin, and irinotecan (mFOLFIRINOX) to modified fluorouracil, leucovorin calcium, and oxaliplatin (mFOLFOX) for the treatment of advanced, unresectable, or metastatic HER2 negative esophageal, gastroesophageal junction, and gastric adenocarcinoma. The usual approach for patients is treatment with FOLFOX chemotherapy. Chemotherapy drugs work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Fluorouracil stops cells from making DNA and it may kill tumor cells. Leucovorin is used with fluorouracil to enhance the effects of the drug. Oxaliplatin works by killing, stopping, or slowing the growth of tumor cells. Some patients also receive an immunotherapy drug, nivolumab, in addition to FOLFOX chemotherapy. Immunotherapy may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Irinotecan blocks certain enzymes needed for cell division and DNA repair, and it may kill tumor cells. Adding irinotecan to the FOLFOX regimen could shrink the cancer and extend the life of patients with advanced gastroesophageal cancers.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

382 Participants Needed

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do clinical trials in Greenville, PA pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do clinical trials in Greenville, PA work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across trials in Greenville, PA 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length in Greenville, PA is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility in Greenville, PA several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a medical study in Greenville, PA?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest clinical trials in Greenville, PA?

Most recently, we added Cemiplimab for Non-Small Cell Lung Cancer, Pembrolizumab + Radiation for Bladder Cancer and Lebrikizumab for Eczema to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Terms of Service·Privacy Policy·Cookies·Security