Hemiparesis

Current Location

35 Hemiparesis Trials Near You

Power is an online platform that helps thousands of Hemiparesis patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
Constraint-induced movement therapy (CI therapy) is a highly efficacious treatment for residual motor disability in chronic stroke. Its effectiveness is believed to be due, at least in part, to the therapy's ability to aid the brain in "rewiring itself." For example, CI therapy produces increases in the amount of grey matter (the parts of the brain where neuron cell bodies are most closely clustered) in certain areas of the human brain (Gauthier et al., 2008). The cellular and molecular mechanisms that are responsible for this increase in grey matter volume are not known, however. Thus, it is unclear how the therapy helps brains "rewire" themselves. This study aims to better understand the timecourse and cellular/molecular nature of brain changes during CI therapy. Because there is currently no way to directly measure cellular/molecular changes in the brain noninvasively, this study will infer what is happening on a microstructural level using new MRI techniques (three dimensional pictures of the brain). For example, by charting the timecourse of grey matter changes during CI therapy, and cross-comparing this to what is known about the timecourses of different cellular/molecular processes, the investigators can gain a greater understanding of what cellular processes may be responsible for increases in grey matter. The investigators will gain additional information about which cellular processes are important for rehabilitation-induced improvement by measuring larger-scale changes (e.g., amount of blood flow through different brain areas) that accompany cellular changes. The investigators are hopeful that by better understanding how CI therapy can change the brain, the effectiveness of rehabilitation can be improved upon. For example, insight into the mechanisms of rehabilitation-induced brain change may suggest particular drug targets to increase brain plasticity. This study will help us better understand how the brain repairs itself after injury.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

31 Participants Needed

This trial is testing a new therapy program called I-ACQUIRE for infants who have had a stroke. The program involves intensive sessions with therapists to help improve movement and strength. The study will compare two different amounts of therapy to usual treatments to see which works best.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:8 - 36

216 Participants Needed

The primary objective of this study is to tailor and test implementation strategies to support the adoption of two upper extremity motor outcome measures for stroke: the Fugl-Meyer Assessment and the Action Research Arm Test. The study's interdisciplinary team will address this objective through the following specific aims: (a) Tailor a package of implementation strategies (referred to as I-STROM-Implementation STRategies for Outcome Measurement) to promote outcome measure use across the care continuum, (b) Determine the effectiveness of I-STROM on outcome measure adoption and (c) Evaluate the appropriateness, acceptability, and feasibility of I-STROM in rehabilitation settings across the country. The mixed-methods study design is informed by implementation science methodologies, and the tailoring of I-STROM will be guided by input from stakeholders, including occupational therapy practitioners and administrators. The investigators will collect robust quantitative and qualitative data by means of retrospective chart reviews, electronic surveys, and stakeholder focus groups. This study, "Strategies to Promote the Implementation of Outcome Measures in Stroke Rehabilitation," will address core barriers to outcome measure use through a package of implementation strategies, thus laying the groundwork for I-STROM scale-up in health systems nationwide.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

3500 Participants Needed

Objective: The goal of this study is to implement and test a neuro-mechanical gait assist (NMGA) device to correct walking characterized by muscle weakness, incoordination or excessive tone in Veterans with hemiparesis after stroke that adversely affects their ability to walk, exercise, perform activities of daily living, and participate fully in personal, professional and social roles. Research Plan: A prototype NMGA device will be used to develop a finite state controller (FSC) to coordinate each user's volitional effort with surface muscle stimulation and motorized knee assistance as needed. Brace mounted sensors will be used to develop a gait event detector (GED) which will serve the FSC to advance through the phases of gait or stair climbing. In addition, a rule-base intent detection algorithm will be developed using brace mounted sensors and user interface input to select among various functions including walking, stairs climbing, sit-to-stand and stand-to-sit maneuvers. The FSC controller tuning and intent algorithm development and evaluation will be on pilot subjects with difficulty walking after stroke. Outcome measures during development will provide specifications for a new prototype NMGA design which will be evaluated on pilot subjects to test the hypothesis that the NMGA improves walking speed, distance and energy consumption of walking. These baseline data and device will be used to design a follow-up clinical trial to measure orthotic impact of NMGA on mobility in activities of daily living at home and community. Methodology: After meeting inclusion criteria, pilot subjects will undergo baseline gait evaluation with EMG activities of knee flexors and extensors, ankle plantar and dorsiflexors and isokinetic knee strength and passive resistance. They will be fitted with a NMGA combining a knee-ankle-foot-orthosis with a motorized knee joint and surface neuromuscular stimulation of plantar- and dorsi- flexors, vasti and rectus femoris. Brace mounted sensor data will be used for gait event detector (GED) algorithm development and evaluation. The GED will serve the FSC to proceed through phases of gait based on supervisory rule-based user intent recognition algorithm detected by brace mounted sensors and user input interface. The FSC will coordinate feed-forward control of tuned stimulation patterns and closed-loop controlled knee power assist as needed to control foot clearance during swing and stability of the knee during stance. Based on data attained during controller development and evaluation, a new prototype NMGA will be design, constructed and evaluated on pilot subjects to test the hypothesis that a NMGA device improves safety and stability, increases walking speed and distance and minimizes user effort. Clinical Significance: The anticipated outcome is improved gait stability with improved swing knee flexion, thus, increasing the safety and preventing injurious falls of ambulatory individuals with hemiplegia due to stroke found in large and ever-increasing numbers in the aging Veteran population. Correcting gait should lead to improved quality of life and participation.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

5 Participants Needed

This trial tests a new therapy for stroke patients with severe arm and hand movement issues. It combines brain stimulation with muscle electrical stimulation to improve recovery. The goal is to see if this combination works better than other treatments.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

72 Participants Needed

Electrical Stimulation for Paresis

Pittsburgh, Pennsylvania
Vagus nerve stimulation (VNS) is thought to activate neural pathways that release chemicals which promote plasticity and learning. Previous work has shown that the auricular branch of the vagus nerve innervates landmarks on the external ear. Work from the PI's laboratory has shown that electrical current applied to the external ear modulates physiological indexes of brain states implicated in the therapeutic effects of VNS. The broad objective of this project is to better understand physiological mechanisms modulated by auricular stimulation to support possible therapeutic effects in the form of motor learning.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

110 Participants Needed

The purpose of this study is to assess the safety and effectiveness of the Ekso robotic exoskeleton in persons affected by a severe stroke. * Primary Objectives: * To determine if a structured high-dosage exoskeleton training program (EXTP) results in clinically significant gains in walking recovery in individuals affected by severe stroke. * To determine whether timing of EXTP delivery (i.e., sub-acute vs. chronic) and severity (non-ambulators vs. limited house-hold ambulators) affects the improvement in gait speed and overall function following the EXTP training protocol. * To determine whether maintenance or further improvement in gait speed can be achieved by an intensive follow-up program of either a traditional rehabilitation program (TRP) or extended EXTP. * Secondary Objectives: * To determine the effect on functional walking endurance as assessed by the 6 minute walk test and 10 meter walk test, in high-dosage exoskeleton training program (EXTP) vs. traditional rehabilitation program (TRP) carried in an outpatient setting for post stroke individuals. * To determine the effect on functional balance, as assessed by the Berg Balance Scale, Functional Gait Assessment and Five times sit to stand measure as assessed by the 6 minute walk test, in high-dosage exoskeleton training program (EXTP) vs. traditional rehabilitation program (TRP) carried in an outpatient setting for post stroke individuals. * To determine the effect on stroke recovery, as assessed by the step counter of task specific training in high-dosage exoskeleton training program (EXTP) vs. traditional rehabilitation program (TRP) carried in an outpatient setting
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

60 Participants Needed

This study uses functional magnetic resonance imaging to map neural activity throughout the central nervous system during a shoulder abduction task to characterize what motor pathways are being used post-stroke.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

32 Participants Needed

This study aims to evaluate the feasibility and impact of transcutaneous electrical stimulation of the spinal cord (TESS) on the recovery of post-stroke individuals who have upper limb hemiparesis. It will compare outcomes measures between individuals who receive upper limb task specific training with TESS and individuals who receive task specific training of the upper limb with Sham, or fake, TESS.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

14 Participants Needed

The purpose of this research study is to assess the effects of receiving transcutaneous spinal stimulation while performing walking exercises compared to completing walking exercises without spinal stimulation for individuals with hemiplegic TBI.

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased
Age:18 - 65

30 Participants Needed

This study will evaluate the feasibility of transcranial direct current stimulation (tDCS) as an adjunct to an outpatient motor skills-based physiotherapy intervention for children and youth with acquired brain injury. Up to 10 children (age 5-18 years) with childhood onset stroke or traumatic brain injury will be randomly allocated to receive active or sham anodal tDCS immediately prior to the physiotherapy session. These sessions will occur twice weekly for a total of 10 sessions. Assessment of gross motor outcome measures will occur immediately before and after the combined tDCS and physiotherapy treatment protocol. The preliminary treatment effect between the two treatment groups will be compared and other feasibility indicators will be evaluated.
No Placebo Group

Trial Details

Trial Status:Recruiting
Age:5 - 18

10 Participants Needed

The randomized study (in Phase II of the U44) compares the efficacy and durability of 9 weeks (18 sessions) of robot-assisted physical therapy (PTR) versus physical therapy (PT) alone on foot drop as assessed by gait biomechanics (ankle angle at initial contact, peak swing ankle angle, number of heel-first strikes - % total steps, gait velocity) and blinded clinician assessment (dorsiflexion active range of motion, ankle muscle strength, assistive device needs).
No Placebo Group

Trial Details

Trial Status:Recruiting

140 Participants Needed

The purpose of this study is to advance upper limb robot-mediated tele-rehabilitation for patients recovering from stroke by empowering them through active science participation. By varying the tasks' features and affordances of a platform that combines a low-cost haptic device on one hand, and an online citizen science platform on the other, investigators will evaluate different strategies for social telerehabilitation. the two fundamental modes of social interaction - competition and cooperation - in addition to a control condition. Specifically, citizen science activities will be performed by competing, cooperating, or isolated users, and their rehabilitation effectiveness examined. Such effectiveness will be measured by (i) participants' rehabilitation performance (inferred from sensorimotor data acquired through the platform and directly quantified by a supervising therapist); (ii) participants' motivations to contribute (measured through surveys administered online); and (iii) participants' emotional well-being and sense of self-esteem (measured through online surveys).
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:18 - 65

40 Participants Needed

This trial tests a remote therapy that helps stroke patients move their hands using brain signals to control a robotic device. It targets patients with ongoing movement difficulties on one side of their body. The system works by detecting brain signals and moving a robotic hand to aid in motor skill improvement.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

80 Participants Needed

This trial is testing the NuroSleeve, a wearable device that helps people with weak or paralyzed arms move them using electrical signals. It is aimed at those who haven't fully recovered with standard therapies. The device detects small muscle movements and uses them to activate the brace and stimulate muscles, helping with arm movement. Electrical stimulation has been explored in various contexts, including improving arm and hand function in individuals with spinal cord injuries and post-stroke patients.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased
Age:4+

20 Participants Needed

The purpose of this research study is to evaluate and compare different robotic exoskeletons (RE) and identify which is most appropriate for gait training for each patient based off their specific needs. This will help guide clinicians in prescribing the appropriate RE for rehabilitation.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased
Age:50 - 80

96 Participants Needed

This study is designed to further develop and test the hardware and software components of the MyHand device based on user feedback and results from our pilot study. The goal is to refine the device so that is more effective and easier for stroke patients to use to increase their hand function.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

25 Participants Needed

The purpose of this research is to learn about practice conditions that may benefit stroke survivors when learning to use their more affected arm to perform a task. Participants will be randomized into two groups. Experimental and control groups will differ by one practice variable that will not be disclosed until completion of testing procedures. Participants will practice a motor task using both their more and less affected arms for two consecutive days. A Pre-Test will be administered on Day 1 before the training begins. Immediate Transfer of Learning will be administered on Day 2 after the completion of training. Delayed (24-hour) Retention and Transfer Tests will be administered on Day 3.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased
Age:40 - 75

28 Participants Needed

To determine whether treatment with transauricular vagus nerve stimulation (taVNS) during the training of an affected upper limb of a patient with chronic stroke on a robotic motor task alters the motor impairment.

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

45 Participants Needed

To assess the impact of a 12-week virtual seated physical intervention on cardiovascular health and wellness in people with chronic neurological impairments (CNI).
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

60 Participants Needed

Why Other Patients Applied

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

Vibration + CIMT for Hemiparesis

Charleston, South Carolina
The purpose of this study is to determine whether the hand function will improve more by using low-level vibration during constraint-induced movement therapy (CIMT), compared to CIMT alone without vibration.

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Unphased
Age:4 - 9

8 Participants Needed

Placebo Effects for Stroke Recovery

Cambridge, Massachusetts
This trial aims to investigate whether placebo in isolation (open and hidden) has a specific neural signature in stroke subjects thus providing a novel mechanism to explain placebo effects that can be used to ultimately enhance stroke rehabilitation therapies.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

56 Participants Needed

The proposed study is a two-arm randomized clinical trial designed to assess the effects of the StrokeWear system on clinical outcomes over a period of 6-months in chronic stroke survivors. The Intervention group will use StrokeWear system in combination to a motor and behavioral home intervention whereas the Control group will follow usual care which consists of a home-exercise plan (HEP).

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Phase 2

32 Participants Needed

StrokeWear System for Stroke

Boston, Massachusetts
The proposed study is a two-arm randomized clinical trial designed to assess the effects of the StrokeWear system on clinical outcomes over a period of 6-months in subacute stroke survivors. The Intervention group will use StrokeWear system in combination to a motor and behavioral home intervention whereas the Control group will follow usual care which consists of a home-exercise plan (HEP).
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased

88 Participants Needed

The goal of this study is to: 1. Assess the usability of the SynPhNe device in a home environment. 2. Evaluate the efficacy of the SynPhNe home use device to improve motor hand function in chronic stroke subjects as compared to standard care alone.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:21 - 80

40 Participants Needed

The goal of this clinical trial is to learn if wearable sensor data visualization on smartphones can improve the use of the stroke-affected limb during everyday activities. Chronic stroke survivors (\>12 months from onset) ages 18-80 years old with residual upper extremity motor impairments may be eligible to participate. The main question it aims to answer is: Does the mobile health (mHealth) intervention help to improve the use of the stroke-affected upper-limb during daily living? The study is designed so each participant serves as their own control. Researchers will compare information from the baseline, intervention, and retention time periods to see if visualizing the data on the smartphone impacts the participant's daily use of the arm. Participants will be asked to wear a set of wearable ring and wrist sensors and interact with a custom-designed smartphone app, aiming to increase the use of their stroke-affected limb during daily activities as much as possible. They will receive feedback from the app, communicate with study therapists, participate in goal setting, complete clinical assessments, and share about their experience using the system during a virtual interview.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased

50 Participants Needed

The major problem in stroke survivors that is being addressed in this research project is walking asymmetry, i.e., difference between the legs during walking (e.g. steps on the more affected side are longer than the other). A potential solution to this problem is using new technology like virtual reality during walking training to make stroke survivors have a better sense of their asymmetry. A second problem that we aim to address in this study is whether asymmetry is accurately felt by the stroke survivors and how we can address it. Our ongoing work on the effects of virtual reality on learning new walking tasks in stroke survivors indicates that virtual reality maybe particularly important for those with walking asymmetry. In this study, we plan to recruit stroke survivors who have such asymmetries during walking and have them learn a new walking task in virtual reality. We will also test the stroke survivors to determine if there is a relationship between how well they learn the new task with their ability to feel asymmetry accurately.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:21+

120 Participants Needed

The goal of this study is to determine the efficacy of electromechanical exoskeleton-assisted gait training on rehabilitation functional outcomes in patients with stroke undergoing therapy in an in-patient rehabilitation facility.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

50 Participants Needed

TENS for Stroke

Dallas, Texas
The subjects will be asked to attend minimum 15 separate sessions, 6 for testing changes in reflex behaviors, 3 for testing changes in the influence of descending motor tracts on spinal motor neurons, 3 for each testing functional movement in response to a trip event and cross-tilt walking adaptation pattern, as part of their participation in the research study. The estimated amount of time to enroll and collect the data for each of the subjects is four months' time. The data will be analyzed and ready for grant preparation (if successful) in approximately four months after the start of the study.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

100 Participants Needed

This research study will investigate the use of smart lower limb robotic exoskeleton (developed by the CSIC, Spain) in rehabilitation after stroke. It will compare robotic-assisted rehabilitation with supervised motor practice. Additionally, it will also examine the use of noninvasive scalp electroencephalography (EEG) to learn specific brain wave patterns associated with learning to walk on the powered lower limb exoskeleton. The findings will be used to understand human-robot interaction and to design smart orthotic devices that can be controlled by thought activity and assist those that have lost all or part of their walking abilities.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

60 Participants Needed

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Hemiparesis clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Hemiparesis clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Hemiparesis trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Hemiparesis is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Hemiparesis medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Hemiparesis clinical trials?

Most recently, we added Transcutaneous Electrical Stimulation for Stroke, Robotic Exoskeletons for Stroke Recovery and Spinal Stimulation for Traumatic Brain Injury to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security