Astrocytoma

New York, NY

34 Astrocytoma Trials near New York, NY

Power is an online platform that helps thousands of Astrocytoma patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
This trial is comparing a new drug, selumetinib, with standard chemotherapy to treat patients with a specific type of brain tumor. The patients do not have a certain genetic mutation and are not affected by a genetic disorder. Selumetinib works by blocking enzymes needed for tumor growth, while the standard drugs kill or stop tumor cells from dividing.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:2 - 21

170 Participants Needed

The purpose of this study is to find out if performing additional Magnetic Resonance Image (MRI) scans of the subjects' brain during each week of the radiation treatment of their high-grade glioma will help improve the radiation treatment.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

20 Participants Needed

This trial is studying the effects of two cancer medications, dabrafenib and trametinib, in children. These drugs work by stopping signals that make cancer cells grow. Dabrafenib and trametinib have shown benefits in various BRAF-mutant tumors, including melanoma, lung cancer, and thyroid cancer. The goal is to see how these treatments affect children over time.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 4
Age:1 - 99

163 Participants Needed

This phase II trial studies how well veliparib, radiation therapy, and temozolomide work in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations. Poly adenosine diphosphate (ADP) ribose polymerases (PARPs) are proteins that help repair DNA mutations. PARP inhibitors, such as veliparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving veliparib, radiation therapy, and temozolomide may work better in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations compared to radiation therapy and temozolomide alone.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:3 - 25

38 Participants Needed

The high-grade malignant brain tumors, glioblastoma multiforme (GBM) and anaplastic astrocytoma (AA), comprise the majority of all primary brain tumors in adults. This group of tumors also exhibits the most aggressive behavior, resulting in median overall survival durations of only 9-12 months for GBM, and 3-4 years for AA. Initial therapy consists of either surgical resection, external beam radiation or both. All patients experience a recurrence after first-line therapy, so improvements in both first-line and salvage therapy are critical to enhancing quality-of-life and prolonging survival. It is unknown if currently used intravenous (IV) therapies even cross the blood brain barrier (BBB). The investigators have shown in a previous phase I trial that a single Super-selective Intraarterial Cerebral Infusion (SIACI) of Bevacizumab (up to 15mg/kg) is safe and effective in the treatment of recurrent GBM. Therefore, this phase I/II clinical research trial is an extension of that trial in that the investigators seek to test the hypothesis that repeated dosing of intraarterial Bevacizumab is safe and effective in the treatment of recurrent malignant glioma. By achieving the aims of this study the investigators will also determine if IV therapy with Bevacizumab should be combined with repeated selected intraarterial Bevacizumab to improve progression free and overall survival. The investigators expect that this project will provide important information regarding the utility of repeated SIACI Bevacizumab therapy for malignant glioma, and may alter the way these drugs are delivered to the patients in the near future.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2

54 Participants Needed

This trial studies how well dabrafenib and trametinib work after radiation therapy in children and young adults with a specific type of brain tumor. These drugs help stop tumor growth by blocking signals that tell the cells to multiply. Dabrafenib has been developed and tested extensively for a specific type of skin cancer, showing effectiveness both alone and when used with trametinib.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:3 - 25

58 Participants Needed

Vorasidenib in combination with pembrolizumab in participants with recurrent or progressive isocitrate dehydrogenase-1 (IDH-1) mutant Glioma.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

72 Participants Needed

This randomized phase II clinical trial studies the side effects and how well proton beam or intensity-modulated radiation therapy works in preserving brain function in patients with IDH mutant grade II or III glioma. Proton beam radiation therapy uses tiny charged particles to deliver radiation directly to the tumor and may cause less damage to normal tissue. Intensity-modulated or photon beam radiation therapy uses high-energy x-ray beams shaped to treat the tumor and may also cause less damage to normal tissue. It is not yet known if proton beam radiation therapy is more effective than photon-based beam intensity-modulated radiation therapy in treating patients with glioma.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

120 Participants Needed

Primary brain tumors are typically treated by surgery, radiation therapy and chemotherapy, either individually or in combination. Present therapies are inadequate, as evidenced by the low 5-year survival rate for brain cancer patients, with median survival at approximately 12 months. Glioma is the most common form of primary brain cancer, afflicting approximately 7,000 patients in the United States each year. These highly malignant cancers remain a significant unmet clinical need in oncology. GBM often has a high expression of EFGR (Epidermal Growth Factor Receptor), which is associated with poor prognosis. Several methods of inhibiting this receptor have been tested, including monoclonal antibodies, vaccines, and tyrosine kinase inhibitors. The investigators hypothesize that in patients with recurring GBM, intracranial superselective intra-arterial infusion of Cetuximab (CTX), at a dose of 250mg/m2 in conjunction with hypofractionated radiation, will be safe and efficacious and prevent tumor progression in patients with recurrent, residual GBM.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

37 Participants Needed

This research study is evaluating an investigational drug, an oncolytic virus called rQNestin34.5v.2. This research study is a Phase I clinical trial, which tests the safety of an investigational drug and also tries to define the appropriate dose of the investigational drug as a possible treatment for this diagnosis of recurrent or progressive brain tumor.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

62 Participants Needed

This trial tests the SurVaxM vaccine, which helps the immune system target and destroy cancer cells, in children and young adults with certain difficult-to-treat brain cancers. The vaccine works by teaching the immune system to recognize a protein found in cancer cells. Additional substances are used to make the immune response stronger.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1
Age:1 - 21

35 Participants Needed

This trial tests INCB7839, a drug that blocks proteins helping cancer cells grow, on children with tough-to-treat brain tumors that have returned or grown after initial treatment. The drug works by stopping a protein needed for tumor growth from being released.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Age:3 - 21

13 Participants Needed

This trial is testing a combination of three drugs to treat a specific type of brain tumor called diffuse midline gliomas (DMGs). These drugs aim to stop the tumor from growing by blocking enzymes that the cancer cells need. The trial focuses on patients with DMGs because current treatments are not very effective for them.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:2 - 39

360 Participants Needed

RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. It is not yet known whether radiation therapy is more effective when given together with or without temozolomide in treating patients with low-grade glioma. PURPOSE: This randomized phase III trial is studying radiation therapy so see how well it works when given together with or without temozolomide in treating patients with low-grade glioma.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

540 Participants Needed

This trial is testing a new oral medication called safusidenib for patients with certain types of brain tumors that have not responded to other treatments. The drug works by targeting a specific gene mutation to slow down tumor growth. The study will evaluate the safety and effectiveness of different doses of the medication.

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

125 Participants Needed

The researchers are doing this study to find out whether the radiopharmaceutical therapy (RPT) 177Lu-PSMA-617 is a safe treatment for people with IDH wild type glioma.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

20 Participants Needed

This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating patients with malignant gliomas. Drugs used in chemotherapy, such as vorinostat and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug. Giving vorinostat together with temozolomide may kill more tumor cells.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

83 Participants Needed

This phase I/II trial studies the side effects and the best dose of selumetinib and how well it works in treating or re-treating young patients with low grade glioma that has come back (recurrent) or does not respond to treatment (refractory). Selumetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2
Age:3 - 21

220 Participants Needed

This phase 1b trial studies the side effects and best dose of telaglenastat in combination with radiation therapy and temozolomide in treating patients with IDH-mutated diffuse or anaplastic astrocytoma. Telaglenastat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Chemotherapy drugs, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving telaglenastat with radiation therapy and temozolomide may work better than surgery, radiation therapy, and temozolomide in treating patients with IDH-mutated diffuse astrocytoma or anaplastic astrocytoma.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1
Age:16+

40 Participants Needed

This trial tests AZD9574, a new drug that stops cancer cells from repairing themselves. It targets patients with advanced or relapsed cancers who need new treatment options. The drug is tested alone and in combination with other cancer-fighting drugs.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2

695 Participants Needed

Why Other Patients Applied

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31
Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. It is not yet known whether giving radiation with concomitant and adjuvant temozolomide versus radiation with adjuvant PCV is more effective in treating anaplastic glioma or low grade glioma.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

305 Participants Needed

This trial tests a new treatment for children with aggressive brain tumors that haven't responded to other treatments. The treatment uses a special virus injected into the tumor, followed by a small dose of radiation. The virus kills cancer cells and helps the immune system fight the tumor.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:3 - 21

35 Participants Needed

This phase III trial investigates the best dose of vinblastine in combination with selumetinib and the benefit of adding vinblastine to selumetinib compared to selumetinib alone in treating children and young adults with low-grade glioma (a common type of brain cancer) that has come back after prior treatment (recurrent) or does not respond to therapy (progressive). Selumetinib is a drug that works by blocking a protein that lets tumor cells grow without stopping. Vinblastine blocks cell growth by stopping cell division and may kill cancer cells. Giving selumetinib in combination with vinblastine may work better than selumetinib alone in treating recurrent or progressive low-grade glioma.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:2 - 25

300 Participants Needed

This trial tests a combination of tocilizumab, atezolizumab, and precise radiation therapy in patients with recurrent glioblastoma. Tocilizumab reduces inflammation, atezolizumab boosts the immune system, and the radiation targets the tumor. The goal is to make the tumor more responsive to treatment and improve patient outcomes.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

59 Participants Needed

This trial is testing a new drug called Debio 0123 combined with standard treatments for adults with aggressive brain cancer. It aims to find the best dose, ensure safety, and check if it works better than current treatments.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2

116 Participants Needed

This trial is testing a drug called abemaciclib in patients whose brain tumors have come back after treatment. The drug aims to stop the growth of cancer cells by blocking certain proteins that help them multiply. Researchers want to see both the positive and negative effects of this treatment. Abemaciclib is used primarily for treating metastatic breast cancer.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

64 Participants Needed

RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving radiation therapy together with temozolomide may kill more tumor cells. It is not yet known whether giving temozolomide during and/or after radiation therapy is more effective than radiation therapy alone in treating anaplastic glioma. PURPOSE: This randomized phase III trial is studying giving temozolomide during and/or after radiation therapy to see how well it works compared to radiation therapy alone in treating patients with anaplastic glioma.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

751 Participants Needed

IDH305 for Advanced Cancer

New York, New York
A Phase I study of IDH305 in patients with advanced malignancies that harbor IDH1R132 mutations.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

166 Participants Needed

This phase I trial studies the side effects and best dose of APX005M in treating younger patients with primary malignant central nervous system tumor that is growing, spreading, or getting worse (progressive), or newly diagnosed diffuse intrinsic pontine glioma. APX005M can trigger activation of B cells, monocytes, and dendritic cells and stimulate cytokine release from lymphocytes and monocytes. APX005M can mediate a direct cytotoxic effect on CD40+ tumor cells.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1
Age:1 - 21

32 Participants Needed

This research trial is studying the safety and effectiveness of nivolumab in combination with ipilimumab and surgery when used in the treatment of recurrent glioblastoma. The names of the study drugs involved in this study are: * Nivolumab * Ipilimumab * Placebo (IV solution with no medicine) * Zr-89 Crefmirlimab berdoxam (optional sub-study)
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

63 Participants Needed

Know someone looking for new options? Spread the word