Peripheral Nerve Sheath Tumor

Current Location

8 Peripheral Nerve Sheath Tumor Trials Near You

Power is an online platform that helps thousands of Peripheral Nerve Sheath Tumor patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
This trial is testing whether a new drug called pazopanib, when combined with chemotherapy and radiation, works better for patients with a specific type of soft tissue cancer. Pazopanib helps stop cancer cells from growing, while chemotherapy and radiation kill the cells. The goal is to see if this combination can improve treatment outcomes.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2, 3
Age:2+

140 Participants Needed

This phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer \[NPC\], and squamous cell carcinoma of the head and neck \[SCCHN\]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07/27/2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03/20/2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05/10/2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10/17/2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03/20/2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible (closed to accrual) 9. Intrahepatic cholangiocarcinoma (closed to accrual 03/20/2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03/20/2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03/30/2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non seminomatous tumor C) Teratoma with malignant transformation (closed to accrual) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis (closed to accrual) 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07/27/2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) (closed to accrual) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12/19/2017) 24. Pheochromocytoma, malignant (closed to accrual) 25. Paraganglioma (closed to accrual 11/29/2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex (closed to accrual) 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09/19/2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11/29/2018) 31. Adrenal cortical tumors (closed to accrual 06/27/2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12/22/2017) 33. Not Otherwise Categorized (NOC) Rare Tumors \[To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org\] (closed to accrual 03/15/2019) 34. Adenoid cystic carcinoma (closed to accrual 02/06/2018) 35. Vulvar cancer (closed to accrual) 36. MetaPLASTIC carcinoma (of the breast) (closed to accrual) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09/26/2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors/extramammary Paget's disease (closed to accrual) 40. Peritoneal mesothelioma 41. Basal cell carcinoma (temporarily closed to accrual 04/29/2020) 42. Clear cell cervical cancer 43. Esthenioneuroblastoma (closed to accrual) 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell endometrial cancer 46. Clear cell ovarian cancer (closed to accrual) 47. Gestational trophoblastic disease (GTD) 48. Gallbladder cancer 49. Small cell carcinoma of the ovary, hypercalcemic type 50. PD-L1 amplified tumors 51. Angiosarcoma 52. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor \[PNET\] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible (closed to accrual) 53. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

818 Participants Needed

This phase II trial studies how well glutaminase inhibitor telaglenastat hydrochloride (CB-839 HCl) works in treating patients with specific genetic mutations and solid tumors or malignant peripheral nerve sheath tumors that have spread to other places in the body (metastatic) or cannot be removed by surgery (unresectable). Glutaminase converts an amino acid (building block of proteins) called glutamine to glutamate, which can support several cellular pathways. Telaglenastat hydrochloride works by blocking glutamine activity needed for the growth of cells. When this activity is blocked, the growth of cancer cells may stop and the cancer cells may then die. Cancer is caused by changes (mutations) to genes that control the way cells function and uncontrolled cell growth may result in tumor formation. Specific genetic mutations studied in this clinical trial are NF1 mutation for malignant peripheral nerve sheath tumors, and NF1, KEAP1/NRF2, or STK11/LKB1 mutation for other solid tumors. Telaglenastat hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

50 Participants Needed

This trial tests a combination of three drugs to treat adults with hard-to-treat sarcomas, especially a type called MPNST linked to NF1. The drugs work together to stop cancer growth and boost the immune system. The study aims to find out if this combination is safe and effective. The combination of panobinostat, venetoclax, and anti-CD40 has shown promise in preclinical models for inducing complete tumor remission.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Phase 2

41 Participants Needed

The purpose of this study is to find out whether selinexor is an effective treatment for people who have a relapsed/refractory Wilms tumor, rhabdoid tumor, MPNST, or another solid tumor that makes a higher than normal amount of XPO1 or has genetic changes that increase the activity of XP01.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:12+

36 Participants Needed

This is a pediatric basket study to investigate the safety and efficacy of afamitresgene autoleucel in HLA-A\*02 eligible and MAGE-A4 positive subjects aged 2-21 years of age with advanced cancers
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:2 - 21

20 Participants Needed

This study aims to assess the safety, tolerability, pharmacokinetics, and preliminary efficacy of APG-115, an MDM2 inhibitor, either alone or in combination with pembrolizumab, a programmed cell death protein-1 (PD-1) inhibitor, in patients with metastatic melanomas or advanced solid tumors. Our hypothesis is that restoration of the immune response concomitant to inhibition of the MDM2 pathway (which restores p53 functions) may promote cancer cell death, leading to effective anticancer therapy.
No Placebo Group

Trial Details

Trial Status:Recruiting
Age:12+

230 Participants Needed

The study participant has been diagnosed with non-rhabdomyosarcoma (NRSTS). Primary Objectives Intermediate-Risk * To estimate the 3-year event-free survival for intermediate-risk patients treated with ifosfamide, doxorubicin, pazopanib, surgery, and maintenance pazopanib, with or without RT. * To characterize the pharmacokinetics of pazopanib and doxorubicin in combination with ifosfamide in intermediate-risk participants, to assess potential covariates to explain the inter- and intra-individual pharmacokinetic variability, and to explore associations between clinical effects and pazopanib and doxorubicin pharmacokinetics. High-Risk * To estimate the maximum tolerated dose (MTD) and/or the recommended phase 2 dosage (RP2D) of selinexor in combination with ifosfamide, doxorubicin, pazopanib, and maintenance pazopanib in high-risk participants. * To characterize the pharmacokinetics of selinexor, pazopanib and doxorubicin in combination with ifosfamide in high-risk participants, to assess potential covariates to explain the inter- and intra-individual pharmacokinetic variability, and to explore associations between clinical effects and selinexor, pazopanib and doxorubicin pharmacokinetics. Secondary Objectives * To estimate the cumulative incidence of primary site local failure and distant metastasis-free, disease-free, event-free, and overall survival in participants treated on the risk-based treatment strategy defined in this protocol. * To define and describe the CTCAE Grade 3 or higher toxicities, and specific grade 1-2 toxicities, in low- and intermediate-risk participants. * To study the association between radiation dosimetry in participants receiving radiation therapy and the incidence and type of dosimetric local failure, normal adjacent tissue exposure, and musculoskeletal toxicity. * To evaluate the objective response rate (complete and partial response) after 3 cycles for high-risk patients receiving the combination of selinexor with ifosfamide, doxorubicin, pazopanib, and maintenance pazopanib. * To assess the relationship between the pharmacogenetic variation in drug-metabolizing enzymes or drug transporters and the pharmacokinetics of selinexor, pazopanib, and doxorubicin in intermediate- or high-risk patients. Exploratory Objectives * To explore the correlation between radiographic response, pathologic response, survival, and toxicity, and tumor molecular characteristics, as assessed through next-generation sequencing (NGS), including whole genome sequencing (WGS), whole exome sequencing (WES), and RNA sequencing (RNAseq). * To explore the feasibility of determining DNA mutational signatures and homologous repair deficiency status in primary tumor samples and to explore the correlation between these molecular findings and the radiographic response, survival, and toxicity of patients treated on this protocol. * To explore the feasibility of obtaining DNA methylation profiling on pretreatment, post-induction chemotherapy, and recurrent (if possible) tumor material, and to assess the correlation with this and pathologic diagnosis, tumor control, and survival outcomes where feasible. * To explore the feasibility of obtaining high resolution single-cell RNA sequencing of pretreatment, post-induction chemotherapy, and recurrent (if possible) tumor material, and to characterize the longitudinal changes in tumor heterogeneity and tumor microenvironment. * To explore the feasibility of identifying characteristic alterations in non-rhabdomyosarcoma soft tissue sarcoma in cell-free DNA (cfDNA) in blood as a non-invasive method of detecting and tracking changes during therapy, and to assess the correlation of cfDNA and mutations in tumor samples. * To describe cardiovascular and musculoskeletal health, cardiopulmonary fitness among children and young adults with NRSTS treated on this protocol. * To investigate the potential prognostic value of serum cardiac biomarkers (high-sensitivity cardiac troponin I (hs-cTnI), N-terminal pro B-type natriuretic peptide (NT-Pro-BNP), serial electrocardiograms (EKGs), and serial echocardiograms in patients receiving ifosfamide, doxorubicin, and pazopanib, with or without selinexor. * To define the rates of near-complete pathologic response (\>90% necrosis) and change in FDG PET maximum standard uptake value (SUVmax) from baseline to week 13 in intermediate risk patients with initially unresectable tumors treated with induction pazopanib, ifosfamide, and doxorubicin, and to correlate this change with tumor control and survival outcomes. * To determine the number of high-risk patients initially judged unresectable at diagnosis that are able to undergo primary tumor resection after treatment with ifosfamide, doxorubicin, selinexor, and pazopanib. * To identify the frequency with which assessment of volumes of interest (VOIs) of target lesions would alter RECIST response assessment compared with standard linear measurements.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:< 30

139 Participants Needed

Why Other Patients Applied

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Peripheral Nerve Sheath Tumor clinical trials pay?
Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.
How do Peripheral Nerve Sheath Tumor clinical trials work?
After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Peripheral Nerve Sheath Tumor trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Peripheral Nerve Sheath Tumor is 12 months.
How do I participate in a study as a "healthy volunteer"?
Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.
What does the "phase" of a clinical trial mean?
The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.
Do I need to be insured to participate in a Peripheral Nerve Sheath Tumor medical study ?
Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.
What are the newest Peripheral Nerve Sheath Tumor clinical trials ?
Most recently, we added Combination Therapy for Sarcoma, Combination Therapy for Soft Tissue Sarcoma and Afamitresgene Autoleucel for Pediatric Cancer to the Power online platform.
Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security