Paraplegia

Current Location

26 Paraplegia Trials Near You

Power is an online platform that helps thousands of Paraplegia patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
The purpose of this study is to evaluate a surgically implanted functional electrical stimulation (FES) system to facilitate exercise, standing, stepping and/or balance in people with various degrees of paralysis.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:21 - 75

10 Participants Needed

Bowel issues occur in nearly all people after spinal cord injury (SCI) and one major complication is fecal incontinence (accidents). This complication has been repeatedly highlighted by people living with SCI as particularly life-limiting and in need of more options for interventions. This study will test the effect of genital nerve stimulation (GNS), with non-invasive electrodes, on the activity of the anus and rectum of persons after SCI. Recording anorectal manometry (ARM) endpoints tells us the function of those tissues and our study design (ARM without stim, ARM with stim, ARM without stim) will allow us to conclude the GNS effect and whether it is likely to reduce fecal incontinence. The study will also collect medical, demographic, and bowel related functional information. The combination of all of these data should help predict who will respond to stimulation, what will happen when stimulation is applied, and if that stimulation is likely to provide an improvement in fecal continence for people living with SCI.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

52 Participants Needed

The purpose of this study is to evaluate a surgically implanted functional electrical stimulation (FES) system to facilitate stability of the trunk and hips. FES involves applying small electric currents to the nerves, which cause the muscles to contract. This study evaluates how stabilizing and stiffening the trunk with FES can change the way spinal cord injured volunteers sit, breathe, reach, push a wheelchair, or roll in bed.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:21+

10 Participants Needed

The purpose of this study is to test whether electrical stimulation of the skin in the pelvic area (near the genitals) can reduce the reflexes that cause bowel accidents in people with spinal cord injuries. Current bowel treatments either involve diet and medications or surgery. This study will evaluate whether electrical stimulation can be an alternate option for bowel management. Researchers will: * Use an FDA approved Transcutaneous Electrical Nerve Stimulation (TENS) device off-label * Compare a target stimulation level to a placebo stimulation level Participants will: * Use electrical stimulation on the skin in the pelvic area for 6-8 hours each day for 4 weeks at home * Visit the research center 3 times to participate in exams and answer questions * Keep a daily diary of their bowel symptoms and stimulation times

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

12 Participants Needed

The objective of this study is to determine the effectiveness of remote manual wheelchair skills training program for clinicians. The study will use three-group approach: intervention with remote feedback (Group 1), control group (Group 2), and structured self-study (Group 3). This demonstrates how the intervention compares not only to a control, but also to the next "best alternative" - therapists sourcing web-based training materials and learning independently.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

240 Participants Needed

This multicenter study will enroll 100 patients with acute traumatic cervical and thoracic SCI who have a lumbar intrathecal catheter inserted within 24 hours of their injury. The lumbar intrathecal catheter will be inserted pre-operatively for the measurement of ITP and the collection of cerebrospinal fluid (CSF) samples. SCPP will be calculated as the difference between MAP and the ITP. There are two important distinct yet related objectives in this prospective interventional study. 1. Determine the effect of SCPP maintenance ≥ 65 mmHg in acute SCI on neurologic recovery as measured by ASIA Impairment Scale (AIS) grade conversion and motor score improvement. 2. Collect CSF and blood samples for the measurement of neurochemical biomarkers and storage for future biomarker discovery and validation studies.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:17+

100 Participants Needed

Virtual Peer Coaching for Paraplegia

Pittsburgh, Pennsylvania
The objective of this study is to determine the effectiveness of remote manual wheelchair skills training program. First, peer coaches will be enrolled and trained. Then, trainees will be enrolled into one of three interventions: intervention with remote feedback (Group 1), wait list control group (Group 2), and structured self-study (Group 3).
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

132 Participants Needed

This will be a first-in-human Phase I, open-label, single dose clinical study of MELPIDA administered intrathecally (IT) through a lumbar puncture (LP) to a single subject with confirmed pathogenic mutations in the Adaptor Related Protein Complex 4 Subunit Mu 1 (AP4M1) gene. The primary outcome will be the determination of the safety and tolerability of MELPIDA in patients with SPG50, based on development of toxicity. The secondary outcome will be a preliminary exploration of efficacy of the treatment. MELPIDA, is a recombinant serotype 9 adeno-associated virus (AAV) encoding a codon-optimized human AP4M1 transgene and will be administer to the patient via a single intrathecal infusion of 10 mL at 1E14 vg/mL for a total dose of 1E15 vg. The total study duration is 5 years post dosing and the participant will be tested at screening/baseline (-28 to -7 days), return for dosing, and then follow-up visits post-dosing on Days 7 (+/-2), 30 (+/-2), 60 (+/-2), 90 (+/-14), 180 (+/-14), 270 (+/-14), 360 (+/-14), 540 (+/-14), and 720 (+/-14) days, then annually for the last 3 years.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1
Age:0 - 4
Sex:Male

1 Participants Needed

The goal of this feasibility study is to learn whether Cannabidiol (CBD) can improve urinary incontinence and other symptoms in people with recent spinal cord injury (SCI). Participants will take Epidiolex (purified CBD) for 90 days
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Phase 2

20 Participants Needed

Treatment for sublesional bone loss (osteoporosis) in persons with chronic, motor-complete spinal cord injury (SCI) has been limited and unsuccessful to date. Romosozumab, a sclerostin antagonist, has potential to increase bone formation (anabolic) and decrease bone resorption (anti-catabolic) in persons with chronic SCI. Conventional anti-resorptive therapy alone would not be anticipated to reverse sublesional bone loss in a timely manner because the skeleton below the level of lesion in chronic SCI is assumed to be in a low turnover state. However, because there is a high likelihood that the bone accrued while on romosozumab will be lost once discontinued, denosumab, an anti-resorptive agent, will be administered after treatment with romosozumab, to maintain or, possibly, to continue to increase, bone mineral density (BMD). The purpose of this study is to address the gap in the treatment of osteoporosis in individuals with chronic SCI by partially restoring BMD with romosozumab treatment for 12 months and then to maintain, or further increase, BMD with denosumab treatment for 12 months. A two group, randomized, double-blind, placebo-controlled clinical trial will be conducted in 39 participants who have chronic (\>3 years), motor-complete or incomplete SCI and areal BMD (aBMD) values at the distal femur of at the distal femur \<1.0 g/cm2 measured by dual photon X-ray absorptiometry (DXA). The intervention group will receive 12 months of romosozumab followed by 12 months of denosumab, and the control group will receive 12 months of placebo followed by 12 months denosumab.

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:18 - 65

36 Participants Needed

People with spinal cord injury (SCI) experience a host of secondary complications that can impact their quality of life and functional independence. One of the more prevalent complications is spasticity, which occurs in response to spinal cord damage and the resulting disruption of motor pathways. Common symptoms include spasms and stiffness, and can occur more than once per hour in many people with SCI. Spasticity can have a negative impact over many quality of life domains, including loss of functional independence, activity limitations, and even employment. Its impact on health domains is also pronounced, with many people who have spasticity reporting mood disorders, depression, pain, sleep disturbances, and contractures. Spasticity can interfere with post-injury rehabilitation and lead to hospitalization. There are many treatments for spasticity in this population. However, many do not have long-term efficacy, and, if they do, they are often pharmacological in nature and carry side effects that could limit function or affect health. The goal of this pilot, randomized-controlled study is to investigate the potential efficacy and safety of a non-invasive treatment with a low side effect profile, extracorporeal shockwave therapy (ESWT). ESWT has shown some benefits in people with post-stroke spasticity with no long term side effects. Thirty individuals with chronic, traumatic SCI will be recruited. Fifteen will be provided with ESWT while the other fifteen will be given a sham treatment. Clinical and self-report measures of spasticity and its impact on quality of life will be collected, as well as quantitative ultrasound measures of muscle architecture and stiffness. The ultimate goal of this pilot project is to collect the data necessary to apply for a larger randomized-controlled trial. Conducting a larger trial will allow for a more powerful estimation of safety and efficacy of ESWT as a treatment for spasticity in people with SCI.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

30 Participants Needed

This study aims to demonstrate the safety and effectiveness of the personal exoskeleton in individuals with spinal cord injury (SCI).
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

10 Participants Needed

Locomotor training is often used with the aim to improve corticospinal function and walking ability in individuals with Spinal Cord Injury. Excitingly, the benefits of locomotor training may be augmented by noninvasive electrical stimulation of the spinal cord and enhance motor recovery at SCI. This study will compare the effects of priming locomotor training with high-frequency noninvasive thoracolumbar spinal stimulation. In people with motor-incomplete SCI, a series of clinical and electrical tests of brain and spinal cord function will be performed before and after 40 sessions of locomotor training where spinal stimulation is delivered immediately before either lying down or during standing.

Trial Details

Trial Status:Recruiting

45 Participants Needed

This study aims to demonstrate the safety and effectiveness of the personal exoskeleton in individuals with spinal cord injury (SCI).
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

24 Participants Needed

A study to compare electrophysiologic activity of epidural stimulation and dorsal root ganglion stimulation, as well as quantify changes in motor performance with both types of stimulation over the course of 10 rehabilitation sessions.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased
Age:22+

22 Participants Needed

This is a Phase 1/2 randomized, blinded, dose-escalation study to evaluate the safety and efficacy of intrathecal (IT) administration of SBT101, a recombinant adeno-associated virus serotype 9 (AAV9) containing a functional copy of the human adenosine triphosphate (ATP)-binding cassette transporter subfamily D member 1 (ABCD1; hABCD1) gene, in adult patients with adrenomyeloneuropathy (AMN) aged 18-65 years. Patients will receive a single dose of SBT101 via IT route (or an imitation procedure) and will be followed for safety and efficacy for 2 years. Patients receiving SBT101 will be followed for an additional 3 years (5 total) for Safety. Patients receiving an imitation procedure will be offered the opportunity to receive SBT101 after 2 years, as data indicate.

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:18 - 65
Sex:Male

16 Participants Needed

Spastic ataxias are a group of diseases causing symptoms such as walking difficulties and balance impairments that lead to a high risk of falls. No pharmacological treatments exist to treat these diseases. Unfortunately, little effort is made to develop non-pharmacological treatments specific to spastic ataxias despite the detrimental impact of the disease on several aspects of an individual's life and the high cost of falls for society each year. The three objectives of this project are: 1) to determine the effect of a 12-week rehabilitation program on disease severity as compared with usual care for individuals with spastic ataxias; 2) to identify which factors can help (or not) the implementation of the program in the clinical settings ("reel world"); and 3) to explore the cost-benefits of IMPACT \[rehabIlitation prograM for sPAstiC aTaxias\]. The team has developed the program to specifically target symptoms present in these patients and was previously pilot-tested. Based on the results obtained in this pilot project, positive effects are expected concerning the disease severity of participants. The investigators want, with this project, provide to health care professionals an option to offer better-suited services to people living with spastic ataxia worldwide.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:16+

84 Participants Needed

This study will evaluate a method to optimize parameter settings in epidural spinal cord stimulation used to recover lower extremity volitional movement. The study will also characterize improvement in autonomic function (such as blood pressure control) and other functions related to spinal cord injury.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:22+

100 Participants Needed

People with spinal cord injuries (SCI) are particularly prone to complications from excessive sitting, because many are not able to stand without support. Excessive sitting after SCI is believed to contribute to pressure injuries, pain, osteoporosis, joint stiffness, spasticity, and worsening bowel and bladder function. The VA has developed, patented, and licensed a mobile manual standing wheelchair (MMSW), and the investigators believe the key feature of being able to wheel around while in a standing position will dramatically change how paralyzed Veterans function in their home and community. If this expanded utility is realized, persons with SCI may naturally spend more time standing and less time sitting. To test these ideas, Veterans with SCI will be randomized to using one of two manual standing wheelchairs at home and in the community for two months.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

48 Participants Needed

Safety and Efficacy of AAV9/AP4B1 For Patients with AP4B1-related Hereditary Spastic Paraplegia Type 47 (SPG47): A Phase 1/2 Single-Center, Open-Label Study of Stereotactic Intra-cisterna Magna Administration. The goal of this clinical trial is to evaluate whether a gene therapy can safely treat children with SPG47, a rare genetic condition that causes progressive spasticity and developmental delays. The main questions it aims to answer are: * Is the gene therapy safe and well tolerated? * Does the gene therapy improve motor function and developmental outcomes? Participants will: * Undergo screening assessments to confirm eligibility * Receive a single dose of the gene therapy vector * Attend follow-up visits for safety monitoring and developmental assessments over the course of five years
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Phase 1, 2
Age:12 - 60

5 Participants Needed

Why Other Patients Applied

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31
The goal of this observational study is to learn about the effects of a 9-week dietician-guided program modified from the National Diabetic Prevention Program (modified DPP-diet) in people with spinal cord injury on body composition and insulin sensitivity. The main question it aims to answer is: Does 9 week modified DPP-diet reduce body fat percentage and insulin resistance? Participants will: Have 9 weeks of Telehealth visit with dietician certified in providing DPP. Visit the laboratory before, immediately and 9 weeks after completion of the modified DPP-diet. Share with the researcher on the perceived benefit and obstacles in implementing the modified DPP-diet as part of their daily activities.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased
Age:18 - 65

20 Participants Needed

This trial tests MELPIDA, a gene therapy for patients with SPG50, a severe neurological disorder. MELPIDA aims to deliver a healthy gene to nerve cells to help them function properly and slow down the disease. Gene therapy has shown positive outcomes in treating complex neurological disorders, including amyotrophic lateral sclerosis, Parkinson's disease, and others.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:4 - 10

4 Participants Needed

The SciExVR study will evaluate the potential benefit of autologous bone marrow derived stem cells (BMSC) in the treatment of spinal cord injury with evidence of impaired motor or sensory function. The treatment consists of bilateral paraspinal injections of the BMSC at the level of the injury as well as superior and inferior to that spinal segment followed by an intravenous injection and intranasal placement. Patients undergoing BMSC treatment may also be assigned to use of exoskeletal movement (or equivalent) or virtual reality visualization (or equivalent) to augment upper motor neuron firing and/or receptivity of the sensory neurons. http://mdstemcells.com/sciexvr/
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Unphased

40 Participants Needed

This trial is testing a method where small electrical currents are applied through the skin to stimulate the spinal cord. It aims to help people with spinal cord injuries improve their ability to move. The electrical signals may enhance communication between the brain and muscles, leading to better motor function. This technique has been explored for various applications, including pain control and muscle stimulation, and is now being tested for improving motor function in spinal cord injury patients.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:18 - 65

24 Participants Needed

This study will evaluate if Ursolic Acid supplementation may be effective in reducing muscle loss and improving blood sugar control in the SCI community.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:18 - 65

20 Participants Needed

The DOSED clinical study evaluates the safety and utility of a novel delivery device to deliver LCTOPC1, a cell therapy, to the spinal cord of patients with a spinal cord injury (SCI). LCTOPC1 is designed to replace or support cells that are absent or dysfunctional due to traumatic injury, with a goal to help improve the quality of life and restore or augment functional activity in persons suffering from a traumatic cervical or thoracic injuries.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1
Age:18 - 65

10 Participants Needed

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Paraplegia clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Paraplegia clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Paraplegia trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Paraplegia is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Paraplegia medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Paraplegia clinical trials?

Most recently, we added Gene Therapy for Spastic Paraplegia, LCTOPC1 Delivery Device for Spinal Cord Injury and CBD for Urinary Incontinence to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security