Leukemia

Phoenix, AZ

135 Leukemia Trials near Phoenix, AZ

Power is an online platform that helps thousands of Leukemia patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
This pilot trial assesses the effect of the combination of blinatumomab with dasatinib or imatinib and standard chemotherapy for treating patients with Philadelphia chromosome positive (Ph+) or ABL-class Philadelphia chromosome-like (Ph-like) B-Cell acute lymphoblastic leukemia (B-ALL). Blinatumomab is a bispecific antibody that binds to two different proteins-one on the surface of cancer cells and one on the surface of cells in the immune system. An antibody is a protein made by the immune system to help fight infections and other harmful processes/cells/molecules. Blinatumomab may bind to the cancer cell and a T cell (which plays a key role in the immune system's fighting response) at the same time. Blinatumomab may strengthen the immune system's ability to fight cancer cells by activating the body's own immune cells to destroy the tumor. Dasatinib and imatinib are in a class of medications called tyrosine kinase inhibitors. They work by blocking the action of an abnormal protein that signals cancer cells to multiply, which may help keep cancer cells from growing. Giving blinatumomab and dasatinib or imatinib in combination with standard chemotherapy may work better in treating patients with Ph+ or Ph-like ABL-class B-ALL than dasatinib or imatinib with chemotherapy.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:366 - 46

222 Participants Needed

This phase III trial studies whether inotuzumab ozogamicin added to post-induction chemotherapy for patients with High-Risk B-cell Acute Lymphoblastic Leukemia (B-ALL) improves outcomes. This trial also studies the outcomes of patients with mixed phenotype acute leukemia (MPAL), and B-lymphoblastic lymphoma (B-LLy) when treated with ALL therapy without inotuzumab ozogamicin. Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a type of chemotherapy called calicheamicin. Inotuzumab attaches to cancer cells in a targeted way and delivers calicheamicin to kill them. Other drugs used in the chemotherapy regimen, such as cyclophosphamide, cytarabine, dexamethasone, doxorubicin, daunorubicin, methotrexate, leucovorin, mercaptopurine, prednisone, thioguanine, vincristine, and pegaspargase or calaspargase pegol work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial will also study the outcomes of patients with mixed phenotype acute leukemia (MPAL) and disseminated B lymphoblastic lymphoma (B-LLy) when treated with high-risk ALL chemotherapy. The overall goal of this study is to understand if adding inotuzumab ozogamicin to standard of care chemotherapy maintains or improves outcomes in High Risk B-cell Acute Lymphoblastic Leukemia (HR B-ALL). The first part of the study includes the first two phases of therapy: Induction and Consolidation. This part will collect information on the leukemia, as well as the effects of the initial treatment, to classify patients into post-consolidation treatment groups. On the second part of this study, patients with HR B-ALL will receive the remainder of the chemotherapy cycles (interim maintenance I, delayed intensification, interim maintenance II, maintenance), with some patients randomized to receive inotuzumab. The patients that receive inotuzumab will not receive part of delayed intensification. Other aims of this study include investigating whether treating both males and females with the same duration of chemotherapy maintains outcomes for males who have previously been treated for an additional year compared to girls, as well as to evaluate the best ways to help patients adhere to oral chemotherapy regimens. Finally, this study will be the first to track the outcomes of subjects with disseminated B-cell Lymphoblastic Leukemia (B-LLy) or Mixed Phenotype Acute Leukemia (MPAL) when treated with B-ALL chemotherapy.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:1 - 25

4997 Participants Needed

This trial tests how well the drug imatinib works with different chemotherapy treatments for patients with specific types of leukemia. It aims to find out if a less intense chemotherapy regimen can be as effective as a stronger one but with fewer side effects. The study focuses on patients with certain types of acute lymphoblastic leukemia.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 21

475 Participants Needed

This randomized phase III trial studies how well combination chemotherapy works in treating young patients with newly diagnosed B acute lymphoblastic leukemia that is likely to come back or spread, and in patients with Philadelphia chromosome (Ph)-like tyrosine kinase inhibitor (TKI) sensitive mutations. Chemotherapy drugs, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) and giving the drugs in different doses and in different combinations may kill more cancer cells.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 31

5949 Participants Needed

This study will compare the effects of Quizartinib versus placebo in combination with chemotherapy in participants with newly diagnosed FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD) negative acute myeloid leukemia (AML).
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

700 Participants Needed

This is a nonrandomized study of ruxolitinib in combination with a standard multi-agent chemotherapy regimen for the treatment of B-cell acute lymphoblastic leukemia. Part 1 of the study will optimize the dose of study drug (ruxolitinib) in combination with the chemotherapy regimen. Part 2 will evaluate the efficacy of combination chemotherapy and ruxolitinib at the recommended dose determined in Part 1.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:1 - 21

171 Participants Needed

This pilot phase II trial studies the side effects of azacitidine and combination chemotherapy in infants with acute lymphoblastic leukemia and KMT2A gene rearrangement. Drugs used in chemotherapy, such as methotrexate, prednisolone, daunorubicin hydrochloride, cytarabine, dexamethasone, vincristine sulfate, pegaspargase, hydrocortisone sodium succinate, azacitidine, cyclophosphamide, mercaptopurine, leucovorin calcium, and thioguanine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug may kill more cancer cells.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Age:All

78 Participants Needed

This phase III trial compares hematopoietic (stem) cell transplantation (HCT) using mismatched related donors (haploidentical \[haplo\]) versus matched unrelated donors (MUD) in treating children, adolescents, and young adults with acute leukemia or myelodysplastic syndrome (MDS). HCT is considered standard of care treatment for patients with high-risk acute leukemia and MDS. In HCT, patients are given very high doses of chemotherapy and/or radiation therapy, which is intended to kill cancer cells that may be resistant to more standard doses of chemotherapy; unfortunately, this also destroys the normal cells in the bone marrow, including stem cells. After the treatment, patients must have a healthy supply of stem cells reintroduced or transplanted. The transplanted cells then reestablish the blood cell production process in the bone marrow. The healthy stem cells may come from the blood or bone marrow of a related or unrelated donor. If patients do not have a matched related donor, doctors do not know what the next best donor choice is. This trial may help researchers understand whether a haplo related donor or a MUD HCT for children with acute leukemia or MDS is better or if there is no difference at all.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:6 - 21

435 Participants Needed

This randomized phase III trial studies how well blinatumomab works compared with standard combination chemotherapy in treating patients with B-cell acute lymphoblastic leukemia that has returned after a period of improvement (relapsed). Immunotherapy with blinatumomab may allow the body's immune system to attack and destroy some types of leukemia cells. It is not yet known whether blinatumomab is more effective than standard combination chemotherapy in treating relapsed B-cell acute lymphoblastic leukemia.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 31

669 Participants Needed

The purpose of this study is to improve upon the TINI study treatment. The study will test the ability of a type of immunotherapy called blinatumomab to clear persistent leukemia. Blinatumomab targets CD19 which is located on the leukemia cells outer membrane.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:1 - 1

90 Participants Needed

This phase II trial studies how well trametinib works in treating patients with juvenile myelomonocytic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:1 - 21

10 Participants Needed

This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:1 - 21

80 Participants Needed

This randomized phase III trial studies how well bortezomib and sorafenib tosylate work in treating patients with newly diagnosed acute myeloid leukemia. Bortezomib and sorafenib tosylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving bortezomib and sorafenib tosylate together with combination chemotherapy may be an effective treatment for acute myeloid leukemia.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:< 29

1645 Participants Needed

The primary purpose of this study is to assess the tolerability of oral asciminib (80 mg QD) in comparison with that of the second generation (2G) Tyrosine Kinase Inhibitor (TKI) nilotinib (300 mg BID), in adult patients with newly diagnosed Positive Chronic Myelogenous Leukemia in Chronic Phase (Ph+ CML-CP).
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

568 Participants Needed

This randomized phase III trial is studying different combination chemotherapy regimens and their side effects and comparing how well they work in treating young patients with newly diagnosed T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which combination chemotherapy regimen is more effective in treating T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. After a common induction therapy, patients were risk assigned and eligible for one or both post-induction randomizations: Escalating dose Methotrexate versus High Dose Methotrexate in Interim Maintenance therapy, No Nelarabine versus Nelarabine in Consolidation therapy. T-ALL patients are risk assigned as Low Risk, Intermediate Risk or High Risk. Low Risk patients are not eligible for the Nelarabine randomization, Patients with CNS disease at diagnosis were assgined to receive High Dose Methotrexate, patients who failed induction therapy were assigned to receive Nelarabine and High Dose Methotrexate. T-LLy patients were all assigned to escalating dose Methotrexate and were risk assigned as Standard Risk, High Risk and induction failures. Standard risk patients did not receive nelarabine, High risk T-LLy patients were randomized to No Nelarabine versus Nelarabine, and Induction failures were assigned to receive Nelarabine.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Age:1 - 30

1895 Participants Needed

This phase II trial studies how well sapanisertib works in treating patients with acute lymphoblastic leukemia that has returned after a period of improvement (relapsed) or has not responded to previous treatment (refractory). Sapanisertib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting

16 Participants Needed

This trial is testing whether adding venetoclax to standard chemotherapy can help young patients with relapsed AML. Venetoclax works by blocking a protein that helps cancer cells survive, making it easier for the chemotherapy to kill them. The study aims to find better treatment options for these patients who have limited choices. Venetoclax has been shown to improve overall survival in older and unfit patients with newly diagnosed acute myeloid leukemia when combined with lower intensity therapies.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:29 - 21

98 Participants Needed

This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:< 21

1186 Participants Needed

This phase III trial studies how well ibrutinib and obinutuzumab with or without venetoclax work in treating patients with chronic lymphocytic leukemia. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Obinutuzumab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving ibrutinib, obinutuzumab, and venetoclax may work better than giving ibrutinib and obinutuzumab in treating patients with chronic lymphocytic leukemia.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

720 Participants Needed

This study is designed to evaluate progression-free survival (PFS) endpoint for acalabrutinib versus (vs) ibrutinib in previously treated chronic lymphocytic leukemia.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

533 Participants Needed

Why Other Patients Applied

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38
This Primary objective is evaluating the efficacy of obinutuzumab in combination with chlorambucil (Arm A) compared with acalabrutinib in combination with obinutuzumab (Arm B) for the treatment of previously untreated chronic lymphocytic leukemia (CLL). Secondary objectives: 1) To evaluate the efficacy of obinutuzumab in combination with chlorambucil (Arm A) versus acalabrutinib monotherapy (Arm C) based on IRC assessment of PFS per IWCLL 2008 criteria. 2)To compare obinutuzumab plus chlorambucil (Arm A) versus acalabrutinib plus obinutuzumab (Arm B) and obinutuzumab plus chlorambucil (Arm A) versus acalabrutinib monotherapy (Arm C) in terms of: IRC-assessed objective response rate (ORR); Tine to next treatment (TTNT); Overall Survival (OS)
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

535 Participants Needed

This phase III trial studies tretinoin and arsenic trioxide in treating patients with newly diagnosed acute promyelocytic leukemia. Standard treatment for acute promyelocytic leukemia involves high doses of a common class of chemotherapy drugs called anthracyclines, which are known to cause long-term side effects, especially to the heart. Tretinoin may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Arsenic trioxide may stop the growth of cancer cells by either killing the cells, by stopping them from dividing, or by stopping them from spreading. Completely removing or reducing the amount of anthracycline chemotherapy and giving tretinoin together with arsenic trioxide may be an effective treatment for acute promyelocytic leukemia and may reduce some of the long-term side effects.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:12 - 21

158 Participants Needed

This randomized phase III trial compares how well combination chemotherapy works when given with or without bortezomib in treating patients with newly diagnosed T-cell acute lymphoblastic leukemia or stage II-IV T-cell lymphoblastic lymphoma. Bortezomib may help reduce the number of leukemia or lymphoma cells by blocking some of the enzymes needed for cell growth. It may also help chemotherapy work better by making cancer cells more sensitive to the drugs. It is not yet known if giving standard chemotherapy with or without bortezomib is more effective in treating newly diagnosed T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 30

847 Participants Needed

This phase II trial tests the safety, side effects, and effectiveness of asparaginase Erwinia chrysanthemi during induction chemotherapy followed by consolidation chemotherapy in treating high-risk adults with newly diagnosed acute lymphoblastic leukemia or lymphoblastic lymphoma. Asparaginase Erwinia chrysanthemi, a type of protein synthesis inhibitor, is a drug that is made up of the enzyme asparaginase, which comes from the bacterium Erwinia chrysanthemi, and is used with other drugs in people who cannot take asparaginase that comes from the bacterium E. coli. Asparaginase Erwinia chrysanthemi breaks down the amino acid asparagine and may stop the growth of cancer cells that need asparagine to grow. It may also kill cancer cells. Induction therapy, consisting of cytarabine, dexamethasone, vincristine, daunorubicin, methotrexate, and rituximab, is the first choice of treatment. Consolidation therapy, consisting of cyclophosphamide, cytarabine, vincristine, mercaptopurine, methotrexate and rituximab, is given after initial therapy to kill any remaining cancer cells. Vincristine is in a class of medications called vinca alkaloids. It works by stopping cancer cells from growing and dividing and may kill them. Methotrexate is in a class of medications called antimetabolites. It is also a type of antifolate. Methotrexate stops cells from using folic acid to make deoxyribonucleic acid (DNA) and may kill cancer cells. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Cyclophosphamide is in a class of medications called alkylating agents. It works by damaging the cell's DNA and may kill cancer cells. It may also lower the body's immune response. Cytarabine and mercaptopurine stop cells from making DNA and may kill cancer cells. They are a type of antimetabolite. Daunorubicin blocks a certain enzyme needed for cell division and DNA repair and may kill cancer cells. It is a type of anthracycline antibiotic and a type of topoisomerase inhibitor. Dexamethasone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. Giving asparaginase Erwinia chrysanthemi with induction chemotherapy followed by consolidation chemotherapy may be safe, tolerable, and/or effective in treating high-risk adults with newly diagnosed acute lymphoblastic leukemia or lymphoblastic lymphoma.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:18 - 54

53 Participants Needed

This trial tests bosutinib, a daily oral medication, in children with a type of leukemia. It aims to find a safe dose and see how well it works in those newly diagnosed or who haven't responded to other treatments. Bosutinib helps by blocking proteins that cancer cells need to grow. Bosutinib is a type of medication used for treating leukemia, especially in cases not responding to other treatments.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2
Age:1 - 17

60 Participants Needed

This is a single arm, open-label, multi-center, phase II study to determine the efficacy and safety of tisagenlecleucel in de novo HR pediatric and young adult B-ALL patients who received first-line treatment and are EOC MRD positive. The study will have the following sequential phases: screening, pre-treatment, treatment \& follow-up, and survival. After tisagenlecleucel infusion, patient will have assessments performed more frequently in the first month and then at Day 29, then every 3 months for the first year, every 6 months for the second year, then yearly until the end of the study. Efficacy and safety will be assessed at study visits and as clinically indicated throughout the study. The study is expected to end in approximately 8 years after first patient first treatment (FPFT). A post-study long term follow-up safety will continue under a separate protocol per health authority guidelines.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:1 - 25

122 Participants Needed

This randomized phase II trial studies how well ruxolitinib phosphate, and bosutnib, dasatinib, imatinib or nilotinib, work in treating patients with chronic myeloid leukemia. Chronic myeloid leukemia cells produce a protein called BCR-ABL. The BCR-ABL protein helps chronic myeloid leukemia cells to grow and divide. Tyrosine kinase inhibitors, such as bosutinib, dasatinib, and nilotinib, stop the BCR-ABL protein from working, which helps to reduce the amount of chronic myeloid leukemia cells in the body. Ruxolitinib is a different type of drug that helps to stop the body from making substances called growth factors. Chronic myeloid leukemia cells need growth factors to grow and divide. The addition of ruxolitinib to the tyrosine kinase inhibitor may or may not help reduce the amount of chronic myeloid leukemia cells in the body.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

84 Participants Needed

This study will evaluate the use of non- TBI (total body irradiation) conditioning for B-ALL patients with low risk of relapse as defined by absence of NGS-MRD (next generation sequencing minimal residual disease) before receiving a hematopoietic cell transplant (HCT). Patients diagnosed with B-ALL who are candidates for HCT will be screened by NGS-MRD on a test of bone marrow done before the HCT. Subjects who are pre-HCT NGS-MRD negative will be eligible to receive a non-TBI conditioning regimen as part of the treatment cohort of the study. Subjects who are pre-HCT NGS-MRD positive will be treated as per treating center standard and will be followed in an observational cohort (HCT center standard of care).
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:1 - 25

95 Participants Needed

This phase II MyeloMATCH treatment trial tests whether the standard approach of cytarabine and daunorubicin in comparison to the following experimental regimens works to shrink cancer in patients with high risk acute myeloid leukemia (AML): 1) daunorubicin and cytarabine liposome alone; 2) cytarabine and daunorubicin with venetoclax; 3) azacitidine and venetoclax; 4) daunorubicin and cytarabine liposome and venetoclax. "High-risk" refers to traits that have been known to make the AML harder to treat. Cytarabine is in a class of medications called antimetabolites. It works by slowing or stopping the growth of cancer cells in the body. Daunorubicin is in a class of medications called anthracyclines. It also works by slowing or stopping the growth of cancer cells in the body. Azacitidine is in a class of medications called demethylation agents. It works by helping the bone marrow to produce normal blood cells and by killing abnormal cells. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. There is evidence that these newer experimental treatment regimens may work better in getting rid of more AML compared to the standard approach of cytarabine and daunorubicin.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:18 - 59

335 Participants Needed

This trial is testing if giving special immune cells from a donor to children and young adults with high-risk AML can help their immune system fight cancer and infections better after a bone marrow transplant.
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Phase 2
Age:0 - 25

30 Participants Needed

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Leukemia clinical trials in Phoenix, AZ pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Leukemia clinical trials in Phoenix, AZ work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Leukemia trials in Phoenix, AZ 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length in Phoenix, AZ for Leukemia is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility in Phoenix, AZ several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Leukemia medical study in Phoenix, AZ?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Leukemia clinical trials in Phoenix, AZ?

Most recently, we added Pirtobrutinib for Chronic Lymphocytic Leukemia, DLI-X for Leukemia and Asparaginase Erwinia Chrysanthemi + Chemotherapy for Blood Cancer to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Terms of Service·Privacy Policy·Cookies·Security