Glioblastoma

Houston, TX

71 Glioblastoma Trials near Houston, TX

Power is an online platform that helps thousands of Glioblastoma patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
This phase III trial compares the effect of adding lomustine to standard chemotherapy with temozolomide and radiation therapy versus temozolomide and radiation therapy alone in shrinking or stabilizing newly diagnosed MGMT methylated glioblastoma. MGMT methylated tumors are more likely to respond to temozolomide chemotherapy. Temozolomide is in a class of medications called alkylating agents. It works by damaging the cell's DNA and may kill tumor cells and slow down or stop tumor growth. Lomustine is a chemotherapy drug and in a class of medications called alkylating agents. It damages the cell's DNA and may kill tumor cells. Radiation therapy uses high energy x-ray photons to kill tumor cells and shrink tumors. Adding lomustine to standard chemotherapy with temozolomide and radiation therapy may shrink or stabilize glioblastoma.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

306 Participants Needed

This phase II/III trial compares the usual treatment with radiation therapy and temozolomide to radiation therapy in combination with immunotherapy with ipilimumab and nivolumab in treating patients with newly diagnosed MGMT unmethylated glioblastoma. Radiation therapy uses high energy photons to kill tumor and shrink tumors. Chemotherapy drugs, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Temozolomide, may not work as well for the treatment of tumors that have the unmethylated MGMT. Immunotherapy with monoclonal antibodies called immune checkpoint inhibitors, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is possible that immune checkpoint inhibitors may work better at time of first diagnosis as opposed to when tumor comes back. Giving radiation therapy with ipilimumab and nivolumab may lengthen the time without brain tumor returning or growing and may extend patients' life compared to usual treatment with radiation therapy and temozolomide.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2, 3

159 Participants Needed

The purpose of this study is to establish the recommended phase 2 dose of eflornithine in combination with temozolomide in patients whose glioblastoma or astrocytoma is newly diagnosed, and to evaluate safety and tolerability of this combination at that dose.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

66 Participants Needed

This phase II trial studies how well dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) works in measuring relative cerebral blood volume (rCBV) for early response to bevacizumab in patients with glioblastoma that has come back. DSC-MRI may help evaluate changes in the blood vessels within the cancer to determine a patient?s response to treatment.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

146 Participants Needed

This phase II trial studies the effects of pembrolizumab on the body, or pharmacodynamics, in patients with glioblastoma that has come back. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

18 Participants Needed

This trial is testing a new oral medication called safusidenib for patients with certain types of brain tumors that have not responded to other treatments. The drug works by targeting a specific gene mutation to slow down tumor growth. The study will evaluate the safety and effectiveness of different doses of the medication.

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

125 Participants Needed

This trial tests TAS2940, a new drug for patients with advanced cancers who have no other treatment options. TAS2940 works by blocking proteins that help cancer cells grow. It is effective against certain types of tumors.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

29 Participants Needed

This research study is evaluating an investigational drug, an oncolytic virus called rQNestin34.5v.2. This research study is a Phase I clinical trial, which tests the safety of an investigational drug and also tries to define the appropriate dose of the investigational drug as a possible treatment for this diagnosis of recurrent or progressive brain tumor.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

62 Participants Needed

This trial is testing a new drug called NGM707, both by itself and with another drug, Pembrolizumab. It targets patients with very advanced or spreading solid tumors. The treatment aims to boost the immune system to better fight cancer.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2

179 Participants Needed

This phase I trial studies best dose and side effects of oncolytic adenovirus DNX-2401 in treating patients with high-grade glioma that has come back (recurrent). Oncolytic adenovirus DNX-2401 is made from the common cold virus that has been changed in the laboratory to make it less likely to cause an infection (such as a cold). The virus is also changed to target brain cancer cells and attack them.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

36 Participants Needed

Prospective, open-label, dose-ranging, uncontrolled phase I/II study of Lurbinectedin in combination with irinotecan. The study will be divided into two stages: a Phase I dose escalation stage and a Phase II expansion stage.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2

320 Participants Needed

This phase I trial studies the side effects and best dose of combination chemotherapy in treating patients with glioblastoma multiforme after radiation therapy. Drugs used in chemotherapy, such as temozolomide, memantine hydrochloride, and metformin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing them or stopping them from dividing. Mefloquine may help temozolomide, memantine hydrochloride, and metformin hydrochloride kill more cancer cells by making tumor cells more sensitive to the drug. Giving more than one drug (combination chemotherapy) may kill more tumor cells.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

144 Participants Needed

The goal of this study is to determine the response of the study drug loratinib in treating children who are newly diagnosed high-grade glioma with a fusion in ALK or ROS1. It will also evaluate the safety of lorlatinib when given with chemotherapy or after radiation therapy.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Early Phase 1
Age:1 - 21

15 Participants Needed

This trial is testing whether the combination of ribociclib and everolimus can help children and young adults with aggressive brain tumors live longer. Everolimus is a medication that has been approved for treating various cancers. These drugs are taken by mouth and work by stopping cancer cells from growing. The study focuses on patients whose tumors have specific genetic changes that make them hard to treat with standard therapies.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:12 - 39

120 Participants Needed

This phase I trial is to find out the best dose, possible benefits and/or side effects of engineered natural killer (NK) cells containing deleted TGF-betaR2 and NR3C1 (cord blood \[CB\]-NK-TGF-betaR2-/NR3C1-) in treating patients with glioblastoma that has come back (recurrent). CB-NK-TGF-betaR2-/NR3C1- cells are genetically changed immune cells that may help to control the disease.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1
Age:12+

25 Participants Needed

This trial tests a new treatment for children with aggressive brain tumors that haven't responded to other treatments. The treatment uses a special virus injected into the tumor, followed by a small dose of radiation. The virus kills cancer cells and helps the immune system fight the tumor.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:3 - 21

35 Participants Needed

This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating patients with malignant gliomas. Drugs used in chemotherapy, such as vorinostat and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug. Giving vorinostat together with temozolomide may kill more tumor cells.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

83 Participants Needed

Indoximod was developed to inhibit the IDO (indoleamine 2,3-dioxygenase) enzymatic pathway, which is important in the natural regulation of immune responses. This potent immune suppressive mechanism has been implicated in regulating immune responses in settings as diverse as infection, tissue/organ transplant, autoimmunity, and cancer. By inhibiting the IDO pathway, we hypothesize that indoximod will improve antitumor immune responses and thereby slow the growth of tumors. The central clinical hypothesis for the GCC1949 study is that inhibiting the pivotal IDO pathway by adding indoximod immunotherapy during chemotherapy and/or radiation is a potent approach for breaking immune tolerance to pediatric tumors that will improve outcomes, relative to standard therapy alone. This is an NCI-funded (R01 CA229646, MPI: Johnson and Munn) open-label phase 2 trial using indoximod-based combination chemo-radio-immunotherapy for treatment of patients age 3 to 21 years who have progressive brain cancer (glioblastoma, medulloblastoma, or ependymoma), or newly-diagnosed diffuse intrinsic pontine glioma (DIPG). Statistical analysis will stratify patients based on whether their treatment plan includes up-front radiation (or proton) therapy in combination with indoximod. Central review of tissue diagnosis from prior surgery is required, except non-biopsied DIPG. This study will use the "immune-adapted Response Assessment for Neuro-Oncology" (iRANO) criteria for measurement of outcomes. Planned enrollment is up to 140 patients.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:3 - 21

140 Participants Needed

This trial studies how well fimepinostat works in treating patients with newly diagnosed diffuse intrinsic pontine glioma, or medulloblastoma, or high-grade glioma that have come back. Fimepinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Early Phase 1
Age:3 - 39

30 Participants Needed

This trial tests INCB7839, a drug that blocks proteins helping cancer cells grow, on children with tough-to-treat brain tumors that have returned or grown after initial treatment. The drug works by stopping a protein needed for tumor growth from being released.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Age:3 - 21

13 Participants Needed

Why Other Patients Applied

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50
This phase II trial studies how well temozolomide and radiation therapy work in treating patients with IDH wildtype historically lower grade gliomas or non-histological molecular glioblastomas. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving chemotherapy with radiation therapy may kill more tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The goal of this clinical research study is to compare receiving new radiation therapy doses and volumes to the prior standard treatment for patients with historically grade II or grade III IDH wild-type gliomas, which may now be referred to as IDH wildtype molecular glioblastomas at some institutions. Receiving temozolomide in combination with radiation therapy may also help to control the disease.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

40 Participants Needed

This phase I trial studies the side effects and best dose of APX005M in treating younger patients with primary malignant central nervous system tumor that is growing, spreading, or getting worse (progressive), or newly diagnosed diffuse intrinsic pontine glioma. APX005M can trigger activation of B cells, monocytes, and dendritic cells and stimulate cytokine release from lymphocytes and monocytes. APX005M can mediate a direct cytotoxic effect on CD40+ tumor cells.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1
Age:1 - 21

32 Participants Needed

The goal of this study is to determine the efficacy of the study drug olutasidenib to treat newly diagnosed pediatric and young adult patients with a high-grade glioma (HGG) harboring an IDH1 mutation. The main question the study aims to answer is whether the combination of olutasidenib and temozolomide (TMZ) can prolong the life of patients diagnosed with an IDH-mutant HGG.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:12 - 39

60 Participants Needed

This trial tests the SurVaxM vaccine, which helps the immune system target and destroy cancer cells, in children and young adults with certain difficult-to-treat brain cancers. The vaccine works by teaching the immune system to recognize a protein found in cancer cells. Additional substances are used to make the immune response stronger.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1
Age:1 - 21

35 Participants Needed

G207 for Brain Cancer

Houston, Texas
This study is a clinical trial to determine the safety of inoculating G207 (an experimental virus therapy) into a recurrent or refractory cerebellar brain tumor. The safety of combining G207 with a single low dose of radiation, designed to enhance virus replication, tumor cell killing, and an anti-tumor immune response, will also be tested. Funding Source- FDA OOPD
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1
Age:3 - 21

24 Participants Needed

The purpose of this study is to establish the recommended doses and further evaluate the safety and preliminary antitumor activity of M3554 in participants with soft tissue sarcoma (STS) and glioblastoma, IDH-wildtype. Study details include: Study Duration per participant: Approximately 4 months
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

52 Participants Needed

A Phase I study of IDH305 in patients with advanced malignancies that harbor IDH1R132 mutations.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

166 Participants Needed

This is a multi-center, sequential cohort, open-label, volume and dose escalation study of the safety, tolerability, and distribution of 186RNL given by convection enhanced delivery to patients with recurrent or progressive malignant glioma after standard surgical, radiation, and/or chemotherapy treatment. The study uses a modified Fibonacci dose escalation, followed by an expansion at the maximum tolerated dose (MTD) to determine efficacy. The starting absorbed dose is 1mCi in a volume of 0.660mL.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2

55 Participants Needed

This is a first in human study of TNG456 alone and in combination with abemaciclib in patients with advanced or metastatic solid tumors known to have an MTAP loss. The first part of the study is an open-label, dose escalation and the second part is an open label dose expansion in specific solid tumor types with a confirmed MTAP loss. The study drug, TNG456, is a selective PRMT5 inhibitor administered orally. The study is planned to treat up to 191 participants.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2

191 Participants Needed

This trial is testing a new drug called Debio 0123 combined with standard treatments for adults with aggressive brain cancer. It aims to find the best dose, ensure safety, and check if it works better than current treatments.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2

116 Participants Needed

Know someone looking for new options? Spread the word