Peripheral Nerve Injury

Current Location

19 Peripheral Nerve Injury Trials Near You

Power is an online platform that helps thousands of Peripheral Nerve Injury patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
This is a multicenter, prospective, randomized, subject and evaluator blinded clinical trial to asses the efficacy of Auxilium's NeuroSpan Bridge.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

80 Participants Needed

This study is evaluating a new therapeutic use of electrical stimulation to promote nerve healing and improve functional recovery following surgical intervention for peripheral nerve injury in arm. Participants will be randomized into one of two groups, treatment or control, with all participants receiving standard of care treatment for the nerve injury. The treatment group will also receive a single dose of the therapeutic stimulation during the surgical intervention for their nerve injury.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

60 Participants Needed

The purpose of this study in people living with cervical Spinal Cord Injury (SCI) is to examine the effects of paired neurostimulation (i.e., PCMS) combined with contralateral motor training on inter-limb transfer of ballistic motor and hand dexterity skills.

Trial Details

Trial Status:Recruiting
Trial Phase:Early Phase 1

17 Participants Needed

This study adopts a strategy that has arisen from basic neuroscience research on facilitating adaptive brain plasticity and applies this to rehabilitation to improve functional recovery in peripheral nervous system injuries (including hand transplantation, hand replantation, and surgically repaired upper extremity nerve injuries). The technique involves combining behavioral training with transcranial direct current stimulation (tDCS)-a non-invasive form of brain stimulation capable of facilitating adaptive changes in brain organization.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

180 Participants Needed

The research is being done to compare two methods of creating AFOs: 1. The traditional method, which involves manually creating a mold from a plaster cast of the client's limb. This is time-consuming and labor-intensive; and 2. The newer method uses digital technology, such as 3D scanning and printing, to design and produce the AFOs, potentially making the process faster and less costly. We want to know whether AFOs made using digital technology can provide the same clinical benefits as those made traditionally.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased
Age:8+

50 Participants Needed

The overall objective of this study is to determine the safety of PEG fusion when used with primary repair or reconstruction in patients with an acute upper extremity peripheral nerve injury. PEG is safe and effective for extending the half-life of circulating pharmaceutical products, when used in conjunction with a topical hemostatic agent in surgical wounds, and when used as a colon cleanser for endoscopic surgical procedures. However, PEG fusion has not been rigorously tested as a safe reagent to promote nerve regeneration in humans. Therefore, the goal of this Phase 2a clinical trial is to establish safety data and to examine the effect of PEG fusion on clinical outcomes including recovery of sensory and motor function. Results will be externally validated using data collected in the DoD funded prospective NERVE study and will provide preliminary evidence to power a larger phase II efficacy trial.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

40 Participants Needed

Surgery has traditionally been the mainstay of treatment for patients who experience acute Achilles tendon rupture, and anesthesia for this operation often includes a popliteal nerve block. However, the evidence basis for this practice is uncertain, and popliteal nerve block has associated risks such as peripheral nerve injury. This research study will evaluate the effects of popliteal nerve block on postoperative pain, recovery, and quality of life after Achilles tendon repair surgery, in order to better inform patient and provider decisions to receive or perform popliteal nerve block for this operation.

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased
Age:18 - 65

80 Participants Needed

This trial tests a new treatment using PEG to help repair completely severed nerves in humans. PEG helps the nerve cells reconnect quickly, speeding up healing and improving recovery. PEG has been used in various animal models to improve outcomes in nerve repair by enabling immediate reconnection of injured nerve cells.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

18 Participants Needed

NTX-001 is a single use surgical product intended for use in conjunction with standard suture neurorrhaphy of severed nerves in patients between 18 and 80.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

98 Participants Needed

This trial tests tesamorelin, a drug that increases growth hormone, to help patients with repaired ulnar nerve injuries recover better. The study will compare the recovery of those taking tesamorelin over a year. The goal is to see if tesamorelin improves nerve healing and function. Tesamorelin has been shown to reduce visceral fat and improve lipid profiles in patients with HIV-associated lipodystrophy.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

36 Participants Needed

The goal of this study is to determine which parts of the brain make it possible for some people to move skillfully with their left non-dominant hand.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

147 Participants Needed

Locomotor training is often used with the aim to improve corticospinal function and walking ability in individuals with Spinal Cord Injury. Excitingly, the benefits of locomotor training may be augmented by noninvasive electrical stimulation of the spinal cord and enhance motor recovery at SCI. This study will compare the effects of priming locomotor training with high-frequency noninvasive thoracolumbar spinal stimulation. In people with motor-incomplete SCI, a series of clinical and electrical tests of brain and spinal cord function will be performed before and after 40 sessions of locomotor training where spinal stimulation is delivered immediately before either lying down or during standing.

Trial Details

Trial Status:Recruiting

45 Participants Needed

This pilot study evaluates the tolerability and feasibility of the Axoguard Large-Diameter Nerve Cap (sizes 5-7 mm) for protecting and preserving terminated nerve endings after limb trauma or amputation when immediate attention to the nerve injuries is not possible.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

15 Participants Needed

The primary purpose of this research study is to evaluate the safety and possible harms of injecting one's own Schwann cells along with nerve auto-graft after a severe injury to a major nerve has occurred.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1
Age:18 - 65

30 Participants Needed

The purpose of this study is to assess the safety of autologous human Schwann cell (ahSC) augmentation of nerve autograft repair in participants with severe peripheral nerve injury (PNI). For humans with acute severe PNI, the hypothesis is that augmentation of nerve autograft repair with ahSCs can potentially enhance axonal regeneration and myelin repair and thus improve functional recovery.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1
Age:18 - 65

10 Participants Needed

The purpose of this research is to examine the effects that functional electrical stimulation (FES) therapy has on the way the arms, brain and spinal cord work. The study team wants to understand what recovery looks like in persons with a spinal cord injury (SCI) or peripheral nerve injury (PNI) using the MyndMove (MyndTec Inc., Ontario, Canada) therapy system. This type of therapy uses stimulation to help people with SCI and other neurological conditions to perform common tasks, work out, or strengthen muscles.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

60 Participants Needed

The purpose of this study is to determine if playing a virtual reality walking game can help improve neuropathic pain in adults with incomplete spinal cord injury.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

48 Participants Needed

The purpose of this study is to evaluate the role of single dose 4-aminopyridine (4-AP) on the diagnosis of severing vs non-severing nerve injury after peripheral nerve traction and/or crush injury. The investigational treatment will be used to test the hypothesis that 4-aminopyridine can speed the determination of nerve continuity after peripheral nerve traction and/or crush injuries allowing the identification of incomplete injuries earlier than standard electrodiagnostic (EDX) and clinical assessment. Participants will be randomized to one of two groups to determine the order of treatment they receive (drug and placebo vs placebo and drug). Participants will undergo baseline testing for nerve assessment, receive either drug or placebo based on randomization and undergo hourly sensory and motor evaluation, EDX testing and serum 4AP levels for three hours after dosing. Participants will then repeat this with the crossover arm.

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

68 Participants Needed

The primary goal of this study is to quantify the functional deficits caused by injuries to the brachial plexus and peripheral nerve in the arm. The second goal is to test the possible benefit of electrical stimulation of the injured nerve following surgery. The investigators will test whether electrical stimulation will improve hand function and nerve regeneration after repair for nerve injury. Injuries causing nerve damage in the arm and hand are common. In severe cases, functional outcomes even with surgery remain poor. Recently, electrical stimulation has been applied to injured nerves in rats. This was shown to improve nerve regeneration. These studies showed that as little as one hour of electrical stimulation was effective. Therefore, the investigators plan to test this new method of treatment to determine whether it is also helpful in humans. These will be done by using a symptom severity questionnaire, nerve conduction studies and by testing pressure sensations, hand dexterity and strength. The patients will be randomized to either the treatment or control group. Following the treatment, all baseline measurements will be reevaluated every three months for the first year and every 6 months during the second year. The timing and nature of the evaluation process will be identical in both groups.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

80 Participants Needed

Why Other Patients Applied

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Peripheral Nerve Injury clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Peripheral Nerve Injury clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Peripheral Nerve Injury trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Peripheral Nerve Injury is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Peripheral Nerve Injury medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Peripheral Nerve Injury clinical trials?

Most recently, we added Popliteal Nerve Block for Achilles Tendon Repair, 4-Aminopyridine for Peripheral Nerve Injury and NeuroSpan Bridge vs NeuraGen vs Autograft for Peripheral Nerve Injury to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security