Myoepithelial Tumor

Current Location

5 Myoepithelial Tumor Trials Near You

Power is an online platform that helps thousands of Myoepithelial Tumor patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
This trial tests seclidemstat alone and with other drugs in patients with specific types of sarcoma, especially those who haven't responded to other treatments. The treatment aims to block cancer growth and use chemotherapy to kill cancer cells.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1
Age:12+

50 Participants Needed

The study participant has been diagnosed with non-rhabdomyosarcoma (NRSTS). Primary Objectives Intermediate-Risk * To estimate the 3-year event-free survival for intermediate-risk patients treated with ifosfamide, doxorubicin, pazopanib, surgery, and maintenance pazopanib, with or without RT. * To characterize the pharmacokinetics of pazopanib and doxorubicin in combination with ifosfamide in intermediate-risk participants, to assess potential covariates to explain the inter- and intra-individual pharmacokinetic variability, and to explore associations between clinical effects and pazopanib and doxorubicin pharmacokinetics. High-Risk * To estimate the maximum tolerated dose (MTD) and/or the recommended phase 2 dosage (RP2D) of selinexor in combination with ifosfamide, doxorubicin, pazopanib, and maintenance pazopanib in high-risk participants. * To characterize the pharmacokinetics of selinexor, pazopanib and doxorubicin in combination with ifosfamide in high-risk participants, to assess potential covariates to explain the inter- and intra-individual pharmacokinetic variability, and to explore associations between clinical effects and selinexor, pazopanib and doxorubicin pharmacokinetics. Secondary Objectives * To estimate the cumulative incidence of primary site local failure and distant metastasis-free, disease-free, event-free, and overall survival in participants treated on the risk-based treatment strategy defined in this protocol. * To define and describe the CTCAE Grade 3 or higher toxicities, and specific grade 1-2 toxicities, in low- and intermediate-risk participants. * To study the association between radiation dosimetry in participants receiving radiation therapy and the incidence and type of dosimetric local failure, normal adjacent tissue exposure, and musculoskeletal toxicity. * To evaluate the objective response rate (complete and partial response) after 3 cycles for high-risk patients receiving the combination of selinexor with ifosfamide, doxorubicin, pazopanib, and maintenance pazopanib. * To assess the relationship between the pharmacogenetic variation in drug-metabolizing enzymes or drug transporters and the pharmacokinetics of selinexor, pazopanib, and doxorubicin in intermediate- or high-risk patients. Exploratory Objectives * To explore the correlation between radiographic response, pathologic response, survival, and toxicity, and tumor molecular characteristics, as assessed through next-generation sequencing (NGS), including whole genome sequencing (WGS), whole exome sequencing (WES), and RNA sequencing (RNAseq). * To explore the feasibility of determining DNA mutational signatures and homologous repair deficiency status in primary tumor samples and to explore the correlation between these molecular findings and the radiographic response, survival, and toxicity of patients treated on this protocol. * To explore the feasibility of obtaining DNA methylation profiling on pretreatment, post-induction chemotherapy, and recurrent (if possible) tumor material, and to assess the correlation with this and pathologic diagnosis, tumor control, and survival outcomes where feasible. * To explore the feasibility of obtaining high resolution single-cell RNA sequencing of pretreatment, post-induction chemotherapy, and recurrent (if possible) tumor material, and to characterize the longitudinal changes in tumor heterogeneity and tumor microenvironment. * To explore the feasibility of identifying characteristic alterations in non-rhabdomyosarcoma soft tissue sarcoma in cell-free DNA (cfDNA) in blood as a non-invasive method of detecting and tracking changes during therapy, and to assess the correlation of cfDNA and mutations in tumor samples. * To describe cardiovascular and musculoskeletal health, cardiopulmonary fitness among children and young adults with NRSTS treated on this protocol. * To investigate the potential prognostic value of serum cardiac biomarkers (high-sensitivity cardiac troponin I (hs-cTnI), N-terminal pro B-type natriuretic peptide (NT-Pro-BNP), serial electrocardiograms (EKGs), and serial echocardiograms in patients receiving ifosfamide, doxorubicin, and pazopanib, with or without selinexor. * To define the rates of near-complete pathologic response (\>90% necrosis) and change in FDG PET maximum standard uptake value (SUVmax) from baseline to week 13 in intermediate risk patients with initially unresectable tumors treated with induction pazopanib, ifosfamide, and doxorubicin, and to correlate this change with tumor control and survival outcomes. * To determine the number of high-risk patients initially judged unresectable at diagnosis that are able to undergo primary tumor resection after treatment with ifosfamide, doxorubicin, selinexor, and pazopanib. * To identify the frequency with which assessment of volumes of interest (VOIs) of target lesions would alter RECIST response assessment compared with standard linear measurements.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:< 30

139 Participants Needed

The purpose of this study is to test the hypothesis that 1)intensity-modulated radiotherapy (IMRT) or proton radiation therapy would result in improved local control rate and lowered toxicity compared to conventional radiotherapy, and 2) proton radiation therapy would result in equivalent or improved local control rate with similar or lower toxicity compared to IMRT, in the treatment of locally advanced sinonasal malignancy. Data from retrospective studies suggest that IMRT or proton radiation therapy resulted in promising outcome in patients with sinonasal malignancy. To this date, no prospective study has been conducted to evaluate the outcome of sinonasal cancer treated with IMRT or proton radiation therapy. This Phase II trial is the first prospective study conducted to determine the treatment outcome and toxicity of IMRT or proton in the treatment of sinonasal cancer. IMRT and proton radiation therapy are the two most established and most commonly employed advanced radiotherapy techniques for the treatment of sinonasal cancer. It is highly controversial whether one is superior to the other in terms of local control and toxicity outcome. It is also not clear if a subset of patients would benefit more from one treatment technology versus the other. Due to the rarity and heterogeneity of sinonasal malignancies and the fact that proton beam is only available at a few centers in the United States, it is not feasible at present to do a Phase III study randomizing patients between IMRT and proton radiation therapy. In this study, a planned secondary analysis will be performed, comparing the treatment and toxicity outcome between IMRT and proton. The data on the IMRT and proton comparison from this trial will be used to design future multi-center prospective trials and to determine if randomized trial is necessary. In this study, the treatment technique employed for an individual case will not be determined by the treating physician(s), but rather by the most advanced technology available at the treating institution for the treatment of the sinonasal cancer. At the Massachusetts General Hospital (MGH), proton beam therapy will be used for patients who meet the eligibility criteria. For institutions where protons are not available or institutions where the proton planning systems have not been optimized, IMRT exclusively will be used for the treatment of sinonasal cancer. Patient and tumor characteristics are expected to be comparable between IMRT- and proton- institutions
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

45 Participants Needed

Zoledronic Acid for Cancer

Gainesville, Florida
Hematopoietic stem cell transplantation can cure patients with blood cancer and other underlying diseases. αβ-T cell and B cell depletion has been introduced to decrease GVHD and PTLD and has demonstrated effectiveness for hematologic malignancies and non-malignant diseases additionally increasing the donor pool as to allow for haploidentical transplant to safely occur. While solid tumors can be highly chemotherapy sensitive, many remain resistant and require multimodalities of treatment. Immunotherapy has been developed to harness the immune system in fighting solid tumors, though not all have targeted effects. Some solid tumors are treated with autologous transplants; however, they do not always demonstrate an improved event free survival or overall survival. There has been evidence of the use of allogeneic stem cell transplants to provide a graft versus tumor effect, though studies remain limited. By utilizing αβ-T cell and B cell depletion for stem cell transplants and combining with zoledronic acid, the immune system may potentially be harnessed and enhanced to provide an improved graft versus tumor effect in relapsed/refractory solid tumors and promote an improved event-free survival and overall survival. This study will investigate the safety of treatment with a stem cell graft depleted of αβ-T cell and CD19+ B cells in combination with zoledronic acid in pediatric and young adult patients with select solid tumors, as well as whether this treatment improves survival rates in these patients.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Phase 1, 2
Age:< 25

27 Participants Needed

Seclidemstat Access for Sarcoma

Santa Monica, California
This trial allows patients who have previously benefited from seclidemstat to continue their treatment. Seclidemstat is a drug that aims to stop cancer cells from growing by blocking essential proteins. The trial targets patients who are still seeing positive results.
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Phase 1, 2
Age:12+

10 Participants Needed

Why Other Patients Applied

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Myoepithelial Tumor clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Myoepithelial Tumor clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Myoepithelial Tumor trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Myoepithelial Tumor is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Myoepithelial Tumor medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Myoepithelial Tumor clinical trials?

Most recently, we added Zoledronic Acid for Cancer, Combination Therapy for Soft Tissue Sarcoma and Seclidemstat Access for Sarcoma to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security