Leukemia

Pahrump, NV

38 Leukemia Trials near Pahrump, NV

Power is an online platform that helps thousands of Leukemia patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
This phase III trial compares the effect of adding levocarnitine to standard chemotherapy versus (vs.) standard chemotherapy alone in protecting the liver in patients with leukemia or lymphoma. Asparaginase is part of the standard of care chemotherapy for the treatment of acute lymphoblastic leukemia (ALL), lymphoblastic lymphoma (LL), and mixed phenotype acute leukemia (MPAL). However, in adolescent and young adults (AYA) ages 15-39 years, liver toxicity from asparaginase is common and often prevents delivery of planned chemotherapy, thereby potentially compromising outcomes. Some groups of people may also be at higher risk for liver damage due to the presence of fat in the liver even before starting chemotherapy. Patients who are of Japanese descent, Native Hawaiian, Hispanic or Latinx may be at greater risk for liver damage from chemotherapy for this reason. Carnitine is a naturally occurring nutrient that is part of a typical diet and is also made by the body. Carnitine is necessary for metabolism and its deficiency or absence is associated with liver and other organ damage. Levocarnitine is a drug used to provide extra carnitine. Laboratory and real-world usage of the dietary supplement levocarnitine suggests its potential to prevent or reduce liver toxicity from asparaginase. The overall goal of this study is to determine whether adding levocarnitine to standard of care chemotherapy will reduce the chance of developing severe liver damage from asparaginase chemotherapy in ALL, LL and/or MPAL patients.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:15 - 40

440 Participants Needed

This phase III trial studies how well ibrutinib and obinutuzumab with or without venetoclax work in treating patients with chronic lymphocytic leukemia. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Obinutuzumab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving ibrutinib, obinutuzumab, and venetoclax may work better than giving ibrutinib and obinutuzumab in treating patients with chronic lymphocytic leukemia.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

720 Participants Needed

This randomized phase III trial studies combination chemotherapy with blinatumomab to see how well it works compared to induction chemotherapy alone in treating patients with newly diagnosed breakpoint cluster region (BCR)-c-abl oncogene 1, non-receptor tyrosine kinase (ABL)-negative B lineage acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as blinatumomab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether combination chemotherapy is more effective with or without blinatumomab in treating newly diagnosed acute lymphoblastic leukemia.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:30 - 70

488 Participants Needed

This randomized phase II trial studies how well ruxolitinib phosphate, and bosutnib, dasatinib, imatinib or nilotinib, work in treating patients with chronic myeloid leukemia. Chronic myeloid leukemia cells produce a protein called BCR-ABL. The BCR-ABL protein helps chronic myeloid leukemia cells to grow and divide. Tyrosine kinase inhibitors, such as bosutinib, dasatinib, and nilotinib, stop the BCR-ABL protein from working, which helps to reduce the amount of chronic myeloid leukemia cells in the body. Ruxolitinib is a different type of drug that helps to stop the body from making substances called growth factors. Chronic myeloid leukemia cells need growth factors to grow and divide. The addition of ruxolitinib to the tyrosine kinase inhibitor may or may not help reduce the amount of chronic myeloid leukemia cells in the body.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

84 Participants Needed

This phase III trial compares adding a new anti-cancer drug (venetoclax) to the usual treatment (ibrutinib plus obinutuzumab) in older patients with chronic lymphocytic leukemia who have not received previous treatment. The addition of venetoclax to the usual treatment might prevent chronic lymphocytic leukemia from returning. This trial also will investigate whether patients who receive ibrutinib plus obinutuzumab plus venetoclax and have no detectable chronic lymphocytic leukemia after 1 year of treatment, can stop taking ibrutinib. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotherapy with obinutuzumab may induce changes in body's immune system and may interfere with the ability of cancer cells to grow and spread. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving ibrutinib and obinutuzumab with venetoclax may work better at treating chronic lymphocytic leukemia compared to ibrutinib and obinutuzumab.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:65+

465 Participants Needed

This phase I/II trial studies the safety, side effects and best dose of OBI-3424 and how well it works in treating patients with T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Chemotherapy drugs, such as OBI-3424, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. OBI-3424 may reduce the amount of leukemia in the body.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:12+

67 Participants Needed

The purpose of this study is to evaluate feasibility and acceptability of completing PROs among AYAs randomized to Choice PRO vs Fixed PRO.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:18 - 39

400 Participants Needed

This phase III trial studies whether inotuzumab ozogamicin added to post-induction chemotherapy for patients with High-Risk B-cell Acute Lymphoblastic Leukemia (B-ALL) improves outcomes. This trial also studies the outcomes of patients with mixed phenotype acute leukemia (MPAL), and B-lymphoblastic lymphoma (B-LLy) when treated with ALL therapy without inotuzumab ozogamicin. Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a type of chemotherapy called calicheamicin. Inotuzumab attaches to cancer cells in a targeted way and delivers calicheamicin to kill them. Other drugs used in the chemotherapy regimen, such as cyclophosphamide, cytarabine, dexamethasone, doxorubicin, daunorubicin, methotrexate, leucovorin, mercaptopurine, prednisone, thioguanine, vincristine, and pegaspargase or calaspargase pegol work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial will also study the outcomes of patients with mixed phenotype acute leukemia (MPAL) and disseminated B lymphoblastic lymphoma (B-LLy) when treated with high-risk ALL chemotherapy. The overall goal of this study is to understand if adding inotuzumab ozogamicin to standard of care chemotherapy maintains or improves outcomes in High Risk B-cell Acute Lymphoblastic Leukemia (HR B-ALL). The first part of the study includes the first two phases of therapy: Induction and Consolidation. This part will collect information on the leukemia, as well as the effects of the initial treatment, to classify patients into post-consolidation treatment groups. On the second part of this study, patients with HR B-ALL will receive the remainder of the chemotherapy cycles (interim maintenance I, delayed intensification, interim maintenance II, maintenance), with some patients randomized to receive inotuzumab. The patients that receive inotuzumab will not receive part of delayed intensification. Other aims of this study include investigating whether treating both males and females with the same duration of chemotherapy maintains outcomes for males who have previously been treated for an additional year compared to girls, as well as to evaluate the best ways to help patients adhere to oral chemotherapy regimens. Finally, this study will be the first to track the outcomes of subjects with disseminated B-cell Lymphoblastic Leukemia (B-LLy) or Mixed Phenotype Acute Leukemia (MPAL) when treated with B-ALL chemotherapy.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:1 - 25

4997 Participants Needed

This trial tests how well the drug imatinib works with different chemotherapy treatments for patients with specific types of leukemia. It aims to find out if a less intense chemotherapy regimen can be as effective as a stronger one but with fewer side effects. The study focuses on patients with certain types of acute lymphoblastic leukemia.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 21

475 Participants Needed

This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:1 - 21

80 Participants Needed

This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:< 21

1186 Participants Needed

This trial is testing whether adding venetoclax to standard chemotherapy can help young patients with relapsed AML. Venetoclax works by blocking a protein that helps cancer cells survive, making it easier for the chemotherapy to kill them. The study aims to find better treatment options for these patients who have limited choices. Venetoclax has been shown to improve overall survival in older and unfit patients with newly diagnosed acute myeloid leukemia when combined with lower intensity therapies.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:29 - 21

98 Participants Needed

This study aims to use clinical and biological characteristics of acute leukemias to screen for patient eligibility for available pediatric leukemia sub-trials. Testing bone marrow and blood from patients with leukemia that has come back after treatment or is difficult to treat may provide information about the patient's leukemia that is important when deciding how to best treat it, and may help doctors find better ways to diagnose and treat leukemia in children, adolescents, and young adults.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:< 22

960 Participants Needed

This phase II trial studies how stopping tyrosine kinase inhibitors will affect treatment-free remission in patients with chronic myeloid leukemia in chronic phase. When the level of disease is very low, it's called molecular remission. TKIs are a type of medication that help keep this level low. However, after being in molecular remission for a specific amount of time, it may not be necessary to take tyrosine kinase inhibitors. It is not yet known whether stopping tyrosine kinase inhibitors will help patients with chronic myeloid leukemia in chronic phase continue or re-achieve molecular remission.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:< 25

110 Participants Needed

This phase III trial studies how well blinatumomab works in combination with chemotherapy in treating patients with newly diagnosed, standard risk B-lymphoblastic leukemia or B-lymphoblastic lymphoma with or without Down syndrome. Monoclonal antibodies, such as blinatumomab, may induce changes in the body's immune system and may interfere with the ability of cancer cells to grow and spread. Chemotherapy drugs, such as vincristine, dexamethasone, prednisone, prednisolone, pegaspargase, methotrexate, cytarabine, mercaptopurine, doxorubicin, cyclophosphamide, and thioguanine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Leucovorin decreases the toxic effects of methotrexate. Giving monoclonal antibody therapy with chemotherapy may kill more cancer cells. Giving blinatumomab and combination chemotherapy may work better than combination chemotherapy alone in treating patients with B-ALL. This trial also assigns patients into different chemotherapy treatment regimens based on risk (the chance of cancer returning after treatment). Treating patients with chemotherapy based on risk may help doctors decide which patients can best benefit from which chemotherapy treatment regimens.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:365 - 31

6720 Participants Needed

This phase II trial studies the effect of nivolumab in combination with blinatumomab compared to blinatumomab alone in treating patients with B-cell acute lymphoblastic leukemia (B-ALL) that has come back (relapsed). Down syndrome patients with relapsed B-ALL are included in this study. Blinatumomab is an antibody, which is a protein that identifies and targets specific molecules in the body. Blinatumomab searches for and attaches itself to the cancer cell. Once attached, an immune response occurs which may kill the cancer cell. Nivolumab is a medicine that may boost a patient's immune system. Giving nivolumab in combination with blinatumomab may cause the cancer to stop growing for a period of time, and for some patients, it may lessen the symptoms, such as pain, that are caused by the cancer.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:1 - 30

461 Participants Needed

This trial studies a chemotherapy treatment that adjusts based on how well patients respond initially. It targets younger patients with Down syndrome who have certain types of blood cancer. The treatment aims to effectively kill cancer cells while reducing side effects.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:91 - 3

280 Participants Needed

This phase II trial studies how well inotuzumab ozogamicin and blinatumomab work in treating patients with CD22-positive B-lineage acute lymphoblastic leukemia that is newly diagnosed, has come back, or does not respond to treatment. Immunotherapy with monoclonal antibodies, such as inotuzumab ozogamicin and blinatumomab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

64 Participants Needed

This phase II/III trial studies how well daunorubicin and cytarabine with or without uproleselan works in treating older adult patients with acute myeloid leukemia receiving intensive induction chemotherapy. Drugs used in chemotherapy, such as daunorubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Uproleselan may prevent cancer from returning or getting worse. Giving daunorubicin and cytarabine with uproleselan may work better in treating patients with acute myeloid leukemia compared to daunorubicin and cytarabine alone.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2, 3
Age:60+

264 Participants Needed

This randomized phase III trial studies rituximab with bendamustine hydrochloride or ibrutinib to see how well they work compared to ibrutinib alone in treating older patients with previously untreated chronic lymphocytic leukemia. Rituximab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Chemotherapy drugs, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known whether rituximab with bendamustine hydrochloride may work better than rituximab and ibrutinib or ibrutinib alone in treating chronic lymphocytic leukemia.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:65+

547 Participants Needed

Why Other Patients Applied

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51
This phase III trial studies ibrutinib and rituximab to see how well they work compared to fludarabine phosphate, cyclophosphamide, and rituximab in treating patients with untreated chronic lymphocytic leukemia or small lymphocytic lymphoma. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. It is not yet known whether fludarabine phosphate, cyclophosphamide, and rituximab may work better than ibrutinib and rituximab in treating patients with untreated chronic lymphocytic leukemia or small lymphocytic lymphoma.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

529 Participants Needed

GSK-3β is a potentially important therapeutic target in human malignancies. The Actuate 1801 Phase 1/2 study is designed to evaluate the safety and efficacy of 9-ING-41, a potent GSK-3β inhibitor, as a single agent and in combination with cytotoxic agents, in patients with refractory cancers.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

350 Participants Needed

This pilot trial assesses the effect of the combination of blinatumomab with dasatinib or imatinib and standard chemotherapy for treating patients with Philadelphia chromosome positive (Ph+) or ABL-class Philadelphia chromosome-like (Ph-like) B-Cell acute lymphoblastic leukemia (B-ALL). Blinatumomab is a bispecific antibody that binds to two different proteins-one on the surface of cancer cells and one on the surface of cells in the immune system. An antibody is a protein made by the immune system to help fight infections and other harmful processes/cells/molecules. Blinatumomab may bind to the cancer cell and a T cell (which plays a key role in the immune system's fighting response) at the same time. Blinatumomab may strengthen the immune system's ability to fight cancer cells by activating the body's own immune cells to destroy the tumor. Dasatinib and imatinib are in a class of medications called tyrosine kinase inhibitors. They work by blocking the action of an abnormal protein that signals cancer cells to multiply, which may help keep cancer cells from growing. Giving blinatumomab and dasatinib or imatinib in combination with standard chemotherapy may work better in treating patients with Ph+ or Ph-like ABL-class B-ALL than dasatinib or imatinib with chemotherapy.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:366 - 46

222 Participants Needed

This randomized phase III trial studies how well combination chemotherapy works in treating young patients with newly diagnosed B acute lymphoblastic leukemia that is likely to come back or spread, and in patients with Philadelphia chromosome (Ph)-like tyrosine kinase inhibitor (TKI) sensitive mutations. Chemotherapy drugs, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) and giving the drugs in different doses and in different combinations may kill more cancer cells.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 31

5949 Participants Needed

This is a nonrandomized study of ruxolitinib in combination with a standard multi-agent chemotherapy regimen for the treatment of B-cell acute lymphoblastic leukemia. Part 1 of the study will optimize the dose of study drug (ruxolitinib) in combination with the chemotherapy regimen. Part 2 will evaluate the efficacy of combination chemotherapy and ruxolitinib at the recommended dose determined in Part 1.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:1 - 21

171 Participants Needed

This pilot phase II trial studies the side effects of azacitidine and combination chemotherapy in infants with acute lymphoblastic leukemia and KMT2A gene rearrangement. Drugs used in chemotherapy, such as methotrexate, prednisolone, daunorubicin hydrochloride, cytarabine, dexamethasone, vincristine sulfate, pegaspargase, hydrocortisone sodium succinate, azacitidine, cyclophosphamide, mercaptopurine, leucovorin calcium, and thioguanine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug may kill more cancer cells.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Age:All

78 Participants Needed

This randomized phase III trial studies how well blinatumomab works compared with standard combination chemotherapy in treating patients with B-cell acute lymphoblastic leukemia that has returned after a period of improvement (relapsed). Immunotherapy with blinatumomab may allow the body's immune system to attack and destroy some types of leukemia cells. It is not yet known whether blinatumomab is more effective than standard combination chemotherapy in treating relapsed B-cell acute lymphoblastic leukemia.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 31

669 Participants Needed

This randomized phase III trial studies how well bortezomib and sorafenib tosylate work in treating patients with newly diagnosed acute myeloid leukemia. Bortezomib and sorafenib tosylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving bortezomib and sorafenib tosylate together with combination chemotherapy may be an effective treatment for acute myeloid leukemia.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:< 29

1645 Participants Needed

This clinical trial tests different programs to help patients with acute lymphoblastic leukemia (ALL) remember to take their medications during maintenance therapy at home. One problem with ALL maintenance treatment is remembering to take medicines at home like patients are supposed to. In maintenance, a medicine called 6-mercaptopurine or "6MP" is taken by mouth every day at home. In this study, 6MP prescriptions are filled into a special medication bottle called MEMS® which is fitted with a special cap called TrackCap™ that electronically records when the medication bottle is opened. Researchers are trying a new program to help patients be better at taking their 6MP like they're supposed to. This new program may help patients to remember to take their 6MP medication.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased
Age:10 - 25

64 Participants Needed

This randomized phase III trial is studying different combination chemotherapy regimens and their side effects and comparing how well they work in treating young patients with newly diagnosed T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which combination chemotherapy regimen is more effective in treating T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. After a common induction therapy, patients were risk assigned and eligible for one or both post-induction randomizations: Escalating dose Methotrexate versus High Dose Methotrexate in Interim Maintenance therapy, No Nelarabine versus Nelarabine in Consolidation therapy. T-ALL patients are risk assigned as Low Risk, Intermediate Risk or High Risk. Low Risk patients are not eligible for the Nelarabine randomization, Patients with CNS disease at diagnosis were assgined to receive High Dose Methotrexate, patients who failed induction therapy were assigned to receive Nelarabine and High Dose Methotrexate. T-LLy patients were all assigned to escalating dose Methotrexate and were risk assigned as Standard Risk, High Risk and induction failures. Standard risk patients did not receive nelarabine, High risk T-LLy patients were randomized to No Nelarabine versus Nelarabine, and Induction failures were assigned to receive Nelarabine.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Age:1 - 30

1895 Participants Needed

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Leukemia clinical trials in Pahrump, NV pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Leukemia clinical trials in Pahrump, NV work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Leukemia trials in Pahrump, NV 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length in Pahrump, NV for Leukemia is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility in Pahrump, NV several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Leukemia medical study in Pahrump, NV?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Leukemia clinical trials in Pahrump, NV?

Most recently, we added Blinatumomab + Dasatinib/Imatinib for Acute Lymphoblastic Leukemia, Medication Adherence Programs for ALL and Venetoclax + HMA for Acute Myeloid Leukemia to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Terms of Service·Privacy Policy·Cookies·Security