Heat Exhaustion

Current Location

6 Heat Exhaustion Trials Near You

Power is an online platform that helps thousands of Heat Exhaustion patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
This is a prospective, randomized, open-label clinical trial to evaluate the safety of COVID-19 vaccination and other routine childhood vaccines given simultaneously at Visit 1, as compared to sequential vaccination of COVID-19 vaccine and other vaccines at separate visits (Visits 1 and 2).
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 4
Age:6 - 4

344 Participants Needed

The overall goal of this project is to identify a work/rest cycle that allows for faster mission completion needed in emergency situations, compared to current Army heat guidance, while mitigating heat strain and neuromuscular fatigue. This project will determine the trade-off between faster mission completion and risk of heat strain and physical performance decrements. Completion of this project will allow military leaders to make informed decisions by understanding the impact of their choices on the magnitude of physical performance decrements and expected heat casualties, setting up hot weather missions for success.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:18 - 39

24 Participants Needed

Workplaces rely on upper heat stress limits provided by the American Conference of Governmental Industrial Hygienists (ACGIH) to manage the health and safety of workers in hot environments. This is primarily achieved by interspersing work with rest periods, the length of which is dictated by environmental conditions and work intensity, to maintain core temperature at or below 38.0°C (equivalent to a 1°C increase in body core temperature above resting levels). However, these guidelines employ a "one size fits all" approach to exposure limits that does not consider individual variation (e.g., age) between workers. Moreover, they fail to provide direction on the safe, initial stay times before these heat-mitigation controls should be employed (i.e., rest breaks) in conditions exceeding upper heat stress limits. While recent work has generated estimates of the initial stay times for young to older men before heat-mitigation controls are required for moderate-intensity work, information on initial stay times for heavy-intensity work remains to be assessed. This project will assess the initial stay times for heavy-intensity work for a single work bout as well as for a second work bout that is preceded by an extended rest period such as a lunch break and a work bout performed on the next day to determine if refinements in initial stay times across these periods may be required. Further, the investigators will evaluate if the application of recommended work-rest allocations thereafter would alleviate increases in core temperature for the duration of the work period (e.g., start of shift versus post-lunch period). Given the known age-differences in heat loss that can modulate core temperature regulation during an exercise-heat stress, the investigators will assess responses response in young and older adults.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Sex:Male

20 Participants Needed

Occupational heat stress directly threatens workers' ability to live healthy and productive lives. Heat exposed workers are at an elevated risk of experiencing impaired work performance and cognitive function leading to a greater risk of work-related injuries which includes traumatic injury and a myriad of pathophysiological conditions (e.g., heat stroke, acute kidney injury, adverse cardiovascular events). To mitigate the adverse health effects of occupational heat stress, safety organizations recommend upper limits for heat stress, typically defined by a worker's metabolic rate and the prevailing wet-bulb globe temperature (WBGT). In instances where the heat load created by the combination of work intensity, environment, and clothing worn exceed the upper heat stress limits (uncompensable heat stress), controls such as rest breaks are prescribed to limit increases in core temperature beyond recommended limits. While workers are encouraged to find shelter from the heat during a rest break, it is not always possible or feasible. Typically, workers may rest while remaining exposed to the heat, recover in a shaded area or rest in an air-conditioned room or vehicle. However, the effectiveness of these cooling strategies in mitigating the level of physiological strain experienced by the worker during prolonged work in a hot environment remains unclear. In this project, the investigators will assess the efficacy of the different cooling strategies in preventing excursions in core temperature beyond recommended limits (38.0°C) following the initial stay time for moderate-intensity work in hot ambient conditions (WBGT of 29°C; represents hot outdoor conditions experienced by workers in summers in Ontario, Canada) in context of the prescribed American Conference of Governmental Industrial Hygienists (ACGIH) work-to-rest allocation for unacclimated adults. On three separate days, participants will walk on a treadmill at a fixed metabolic rate of 200 W/m2 until core temperature reaches and/or exceeds 38.0°C or until volitional fatigue. Thereafter, participants will complete an additional 180 min work bout employing the recommended ACGIH work-to-rest allocation of 1:3 (starting with a 45 min rest break followed by a 15 min work bout, with the cycle repeated three times over the 180 min work simulation bout) without (Control) or with cooling mitigation during each 15-min break consisting of either: i) partial cooling equivalent to sitting in a shaded space (WBGT 24°C; 31.7°C and 35% RH) such as under a tree with a light breeze (simulated with pedestal fan fixed at \~2 m/s) or ii) full cooling equivalent to sitting in air-conditioned space (e.g., room or vehicle) maintained at 22°C and 35% RH (equivalent WBGT of 16°C).
No Placebo Group

Trial Details

Trial Status:Recruiting
Sex:Male

20 Participants Needed

The goal of this clinical trial is to learn about the processes occurring in the kidneys while under heat stress in healthy volunteers. The main questions it aims to answer are: * How do the chemicals produced by the body change under conditions of higher versus lower heat stress? * What role does a specific area of the body's metabolism, known as NAD+ metabolism, play in the body's response to heat stress, and can this response be modified by taking vitamin B3?
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Early Phase 1
Age:18 - 45

28 Participants Needed

Life in space is completely void of physical and environmental stress. It is well known that living things need regular physical stress (e.g. exercise) to remain strong, functional and healthy. More and more research is showing that regular environmental stress, for example heat and hypoxia, can further improve physical health. Astronauts aboard the international space station (ISS) exercise for 1-2 hours every day to avoid physical deconditioning that would otherwise cause them to age rapidly in space. Although physical exercise is very effective in remedying this deconditioning, today's astronauts still have physiological changes that indicate accelerated aging. This is a cause for concern given NASA's priority to travel to mars within the next decade; a mission that will require at least double the duration in space for our astronauts. The investigators think that the complete absence of environmental stress, i.e., heat, may be contributing to the accelerated aging that occurs during spaceflight. Our study will assess the health effects of adding heat stress to exercise that could be performed in space by astronauts. The goal is to inform best practice for astronauts to avoid physical deconditioning during long-duration spaceflight. This information will also be relevant to life on earth as spaceflight is a model of inactivity here on earth. Therefore, the potential benefits of adding heat stress will likely translate to life in space and on earth.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:18 - 50

15 Participants Needed

Why Other Patients Applied

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Heat Exhaustion clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Heat Exhaustion clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Heat Exhaustion trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Heat Exhaustion is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Heat Exhaustion medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Heat Exhaustion clinical trials?

Most recently, we added Vitamin B3 for Healthy Volunteers, Exercise + Heat Stress for Cardiometabolic Health and Work/Rest Cycles for Heat Stress to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security