Artificial Respiration

Current Location

10 Artificial Respiration Trials Near You

Power is an online platform that helps thousands of Artificial Respiration patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
Many extremely premature infants, born before 28 weeks' gestation age, require immediate help with breathing after birth. Positive pressure ventilation (PPV) using a device called a T-piece resuscitator is a common method. PPV is needed to establish proper lung function, improve gas exchange, and encourage the infant to breathe spontaneously. However, T-piece resuscitators have limitations, like a lack of visual feedback and variable settings, which may result in reduced effectiveness of PPV. Improving PPV effectiveness may reduce the need for more invasive procedures, such as intubation, which pose an increased risk of complications and death for these fragile infants. A novel approach, that may overcome the above limitations and deliver PPV with precise settings through a nasal mask, is to use a ventilator to deliver PPV (V-PPV) using a respiratory mode called nasal intermittent positive pressure ventilation (NIPPV). While NIPPV is commonly used in neonatal intensive care units to support breathing in premature infants, the impact of V-PPV use during immediate post-birth stabilization needs to be studied. Preliminary data from our recent single-center study confirmed the feasibility of using V-PPV for resuscitation of extremely premature babies and indicated its potential superiority with a 28% decrease in the need for intubation compared to historical use of T-piece. This promising innovation may enhance outcomes for these vulnerable infants by refining the way we provide respiratory support in their critical first moments. The research objective is to compare the clinical outcomes of extremely premature infants receiving manual T-piece versus V-PPV during immediate post-birth stabilization. The primary aim is to evaluate the impact of V-PPV on major health complications or death. This study seeks to provide insights into improving the care and outcomes of these infants during a critical stage of transition from fetus to newborn.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased
Age:25 - 29

780 Participants Needed

This study aims to explore how the timing of Spontaneous Breathing Trials (SBTs) affects recovery in adult patients who are on mechanical ventilation in the ICU. SBTs are tests used to determine if a patient is ready to breathe on their own without the help of a ventilator. The study will compare two different timing strategies for these trials: one group of patients will have the test early in the morning, while the other group will have it later in the morning. By observing the outcomes, such as how long patients need to stay on the ventilator, the study hopes to find the best time to perform these trials to help patients recover more quickly and safely.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:21+

348 Participants Needed

Background: Reverse triggering (RT) is a frequent phenomenon observed in sedated patients under a mechanical ventilation mode called assist-control ventilation. RT is when the ventilator would trigger the patient's respiratory effort instead of the correct order of the patient's respiratory effort triggering the ventilator. Reverse triggering can have negative consequences (loss of protective lung ventilation, and causing double breaths - with the ventilator giving two consecutive breaths and not allowing the patient to exhale) but also offer some protective effects (avoid diaphragm disuse atrophy). The balance of its negative vs positive effects depends on its frequency and magnitude of its associated respiratory effort. Respiratory entrainment is the most often referred mechanism involving a change in patient's rate of breathing effort from that of patient's intrinsic rate to the rate of mechanical insufflation. The specific ventilatory settings associated with or responsible for RT remains unknown. Aims: To assess in mechanically ventilated critically ill patients the influence of the set respiratory rate (RR) and tidal volume (Vt) on the presence/development of RT and to describe the pattern of respiratory muscle activity during Reverse Triggering (RT). Methods. 30 adult patients (15 in each group), sedated and under assist-controlled ventilation will be included. Ventilator settings will be modified to modulate the frequency and magnitude of reverse triggering. Initially, with the ventilator on a mode called volume control, which means the ventilator controls the amount of air (tidal volume) and the number of breaths the patients gets every minute (respiratory rate \[RR\]). The tidal volume will be set at the current standard clinical practice setting (6 ml/kg of predicted body weight). The presence of an intrinsic respiratory rate will be assessed with an end-expiratory occlusion maneuver. Next, the number of breaths the ventilator gives per minute (RR) will be changed from 6 breaths less to 6 breaths more, in steps of 2 breaths every minute. The protocol will be repeated again changing the amount of air the patients gets (tidal volume) from 4, 5, 7 and 8 ml/kg. Continuous recordings of airway pressure, flow, esophageal pressure, electrical activity of the diaphragm, main accessory muscles and frontal electroencephalography will be obtained during the protocol and baseline clinical and physiological characteristics and outcomes will be recorded. A validated software will be used to detect RT and measure the intensity and timing of each muscle electrical activity and the magnitude of the inspiratory effort during RT.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

30 Participants Needed

This is a multicentre prospective cohort trial in adult and pediatric ICU patients. The investigators will measure the effect of a patient's inspiratory effort during mechanical ventilation on the lungs and diaphragm. The investigators will daily (for a maximum of 8 days) measure esophageal pressures with a balloon catheter to quantify inspiratory effort and respiratory muscle function, and perform daily ultrasound measurements of the diaphragm and the lungs. The investigators hypothesize that a small inspiratory effort will result in the preservation of diaphragm function and have no adverse effect on lung function.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:29+

150 Participants Needed

Effective respiratory ventilation is achieved by moving the right amount of air to and out of the lungs while keeping the pressures at a safe level. A disposable safety device, Adult Sotair®, was created to improve manual ventilation delivery. In this superiority study, the investigators will perform two-group cross over randomized design to test the superiority of the Adult Sotair® device compared to manual ventilation alone.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

30 Participants Needed

Effective respiratory ventilation is achieved by moving the right amount of air in and out of the lungs while keeping the pressures at a safe level. A disposable safety device, Adult Sotair®, was created to improve manual ventilation delivery. In this non-inferiority study, we will perform a pre-post study design (single group, within-group comparison) to test the non-inferiority of the Adult Sotair® device compared to mechanical ventilation.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

310 Participants Needed

This trial is testing a telehealth system called 'TEACH' to help doctors and nurses better manage the process of waking up and helping patients on ventilators breathe on their own. The goal is to improve patient outcomes by making it easier for healthcare providers to follow best practices.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:16+

13400 Participants Needed

Ear infections are common in young children with cold symptoms, but they can be difficult to diagnose due to small ear canals, child movement, and limited viewing time. In this study, investigators will take photos of the eardrums of children 6-24 months of age with upper respiratory symptoms. The photos will be reviewed by imaging software enhanced with artificial intelligence (AI app) to determine whether the AI app changes how ear infections are diagnosed and treated. The AI app has undergone rigorous study and was found to be highly accurate; but how using this technology affects the diagnosis and treatment by clinicians has not been studied. This research may help improve diagnostic accuracy for ear infections and ensure antibiotics are prescribed only for those children who have definite ear infections.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased
Age:6 - 24

300 Participants Needed

Blood Test for Lung Cancer

DuBois, Pennsylvania
The PROACT LUNG study is a prospective multi-center observational study to validate a blood-based test for the early detection of lung cancer by collecting blood samples from high-risk participants who will undergo a routine, standard-of-care screening Low-Dose Computed Tomography (LDCT).
No Placebo Group

Trial Details

Trial Status:Recruiting
Age:50+

20000 Participants Needed

In this study, the investigators will deploy a software-based clinical decision support tool (eCARTv5) into the electronic health record (EHR) workflow of multiple hospital wards. eCART's algorithm is designed to analyze real-time EHR data, such as vitals and laboratory results, to identify which patients are at increased risk for clinical deterioration. The algorithm specifically predicts imminent death or the need for intensive care unit (ICU) transfer. Within the eCART interface, clinical teams are then directed toward standardized guidance to determine next steps in care for elevated-risk patients. The investigators hypothesize that implementing such a tool will be associated with a decrease in ventilator utilization, length of stay, and mortality for high-risk hospitalized adults.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

30000 Participants Needed

Why Other Patients Applied

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Artificial Respiration clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Artificial Respiration clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Artificial Respiration trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Artificial Respiration is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Artificial Respiration medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Artificial Respiration clinical trials?

Most recently, we added AI Diagnostic Support for Ear Infections, T-piece Resuscitator vs Ventilator for Preterm Birth and Ventilator Settings for Mechanical Ventilation to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security