Limb Pain

Current Location

28 Limb Pain Trials Near You

Power is an online platform that helps thousands of Limb Pain patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
The purpose of the clinical trial is to learn whether electrical nerve block via the Altius System is a safe and effective treatment for patients with post-amputation pain.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased
Age:21+

607 Participants Needed

When a limb is amputated, pain perceived in the part of the body that no longer exists often develops, called "phantom limb" pain. The exact reason that phantom limb pain occurs is unclear, but when a nerve is cut-as happens with an amputation-changes occur in the brain and spinal cord that are associated with persistent pain. The negative feedback-loop between the injured limb and the brain can be stopped by putting local anesthetic-called a "nerve block"-on the injured nerve, effectively keeping any "bad signals" from reaching the brain. A "continuous peripheral nerve block" (CPNB) is a technique providing pain relief that involves inserting a tiny tube-smaller than a piece of spaghetti-through the skin and next to the target nerve. Local anesthetic is then introduced through the tiny tube, which bathes the nerve in the numbing medicine. This provides a multiple-day block that provides opioid-free pain control with no systemic side effects, and may prevent the destructive feedback loop that results in phantom limb pain following an amputation. We propose a multicenter, randomized, triple-masked (investigators, subjects, statisticians), placebo-controlled, parallel arm, human-subjects clinical trial to determine if a prolonged, high-concentration (dense), perioperative CPNB improves post-amputation physical and emotional functioning while decreasing opioid consumption, primarily by preventing chronic phantom limb pain.
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Phase 4

203 Participants Needed

Investigators will evaluate preamputation cryoanalgesia on pain, mobility, opioid use and general physical and emotional disability using a pilot randomized trial design, to explore the amount and variability of improvement on those outcomes and to investigate the potentiality of conducting a future larger randomized controlled trial, which the investigators will assess quantitatively the benefits of cryoanalgesia.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

20 Participants Needed

Spinal Cord Stimulation for Pain

Sewickley, Pennsylvania
To characterize the effects of stimulation parameters on pain relief and other cohort specific outcomes.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Age:22+

360 Participants Needed

The goals of this study are to provide sensory information to amputees and reduce phantom limb pain via electrical stimulation of the lumbar spinal cord and spinal nerves. The spinal nerves convey sensory information from peripheral nerves to higher order centers in the brain. These structures still remain intact after amputation and electrical stimulation of the dorsal spinal nerves in individuals with intact limbs and amputees has been demonstrated to generate paresthetic sensory percepts referred to portions of the distal limb. Further, there is recent evidence that careful modulation of stimulation parameters can convert paresthetic sensations to more naturalistic ones when stimulating peripheral nerves in amputees. However, it is currently unclear whether it is possible to achieve this same conversion when stimulating the spinal nerves, and if those naturalistic sensations can have positive effects on phantom limb pain. As a first step towards those goals, in this study, the investigators will quantify the sensations generated by electrical stimulation of the spinal nerves, study the relationship between stimulation parameters and the quality of those sensations, measure changes in control of a prosthesis with sensory stimulation, and quantify the effects of that stimulation on the perception of the phantom limb and any associated pain.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased
Age:22 - 70

10 Participants Needed

This is a double-blind randomised controlled trial (RCT) which compares the effectiveness of three surgical techniques for alleviating residual limb pain (RLP), neuroma pain and phantom limb pain (PLP). The three surgical treatments are Targeted Muscles Reinnervation (TMR), Regenerative Peripheral Nerve Interface (RPNI), and an active control (neuroma excision and muscle burying). Patients will be follow-up for 4 years.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

110 Participants Needed

The goal of this project is to characterize the types of sensations that can be evoked via electrical stimulation of the spinal cord and spinal nerves. Patients will be recruited from a local pain clinic, each with a spinal cord stimulation device implanted, to participate in experiments to explore the ability to modulate and control the modality, intensity, focality, and location of the sensations evoked by stimulation through the spinal cord stimulator leads. Investigators will connect spinal cord stimulator leads to a custom stimulator system and will ask subjects to report the types of sensations felt. Invesigators will also perform detailed psychophysical metrics to examine participants' ability to discriminate sensations.
No Placebo Group

Trial Details

Trial Status:Recruiting

30 Participants Needed

Individuals with upper-limb amputation usually have intact nerves within the residual limb, and studies have demonstrated that electrical stimulation of those nerves can produce sensations that appear to emanate from the amputated limb. In this study, investigators will examine the sensations that are produced by electrical stimulation of these nerves at the location where they exit the spinal cord. Stimulation of the spinal cord is commonly used to treat intractable back and limb pain, and the procedure includes a test phase in which electrodes are temporarily placed under the skin near the spinal cord and removed at the end of testing. Similarly, in this study, electrodes will be placed near the spinal cord in the upper back and neck, and stimulation will be applied over the course of multiple testing sessions, lasting less than 30 days. The electrodes will be removed at the last day of testing. During each testing session, electrical stimulation will be applied through the electrodes and a series of tests will be performed to determine the types of sensations produced by stimulation. In addition to producing meaningful sensations with electrical stimulation, this study will also test the effect of stimulation on phantom limb sensations and phantom limb pain.
No Placebo Group

Trial Details

Trial Status:Recruiting

10 Participants Needed

NMES for Amputation

Pittsburgh, Pennsylvania
The proposal aims to investigate a non-invasive, cost-effective method for rebuilding muscle mass in individuals with transtibial limb loss. Maintaining a healthy, pain-free residual limb is a primary concern for prosthesis users. Amputees commonly experience muscle deficits leading to mobility issues, poor prosthetic fit, and chronic pain. Neuromuscular electrical stimulation (NMES) is a potential intervention that activates muscles with low-level electrical stimulation, improving strength, function, and reducing pain. The study seeks to understand NMES's effects on muscle parameters and pain to develop evidence-based interventions for amputees. Twenty participants with transtibial amputations will undergo an 8-week NMES training program. Ultrasound imaging will assess muscle thickness, cross-sectional area, and composition changes. The study aims to enhance mobility, prosthetic fit, and overall well-being of amputees, addressing challenges and reducing healthcare burdens.
Stay on current meds
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

20 Participants Needed

The objective of this study is to develop a virtual rehabilitation system that can be used to effectively treat Phantom Limb Pain (PLP) within the research setting and for at-home use by individuals with upper and lower extremity amputation. We hypothesize that the system will improve PLP for individuals with upper or lower extremity amputation, as measured through with various outcome measures and questionnaires.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

48 Participants Needed

The Low dose ColchicinE in pAtients with peripheral Artery DiseasE to address residual vascular Risk (LEADER-PAD) trial will evaluate if anti-inflammatory therapy with colchicine will reduce vascular events in patients with symptomatic peripheral artery disease.
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

6150 Participants Needed

This study will involve the development of a novel approach to lower extremity residual limb surgical revision that offers the promise of augmenting volitional motor control, restore proprioception and reverse atrophy
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:18 - 65

26 Participants Needed

Amputees often suffer from relentless pain and disability resulting from symptomatic neuromas within the amputation stumps. When conservative measures fail to address these symptoms, two contemporary surgical approaches to treat symptomatic neuromas have become the most popular. Targeted muscle reinnervation (TMR) is a procedure which involves transferring the injured proximal nerve stump into a terminal nerve branch entering muscle, such that the axons from the proximal nerve stump will regenerate into the muscle and thereby prevent neuroma recurrence. Regenerative peripheral nerve interfaces (RPNIs) are muscle grafts placed on the proximal nerve stumps that serve as targets for the regenerating axons from the proximal nerve stumps. While TMR and RPNIs have demonstrated promise for the treatment of symptomatic neuromas, prospective comparative data comparing outcomes with these two approaches is lacking. The investigators have recently developed a novel approach to treat symptomatic neuromas that provides vascularized, denervated muscle targets (VDMTs) for the axons regenerating from the severed proximal nerve stump to reinnervate. This is accomplished by islandizing a segment of muscle on its blood supply and ensuring complete denervation prior to implanting the neighboring transected nerve stump into this muscle. VDMTs offer theoretical benefits in comparison to RPNIs and TMR that the investigators also aim to test in the proposed study. The investigators' objective is to enroll amputees with symptomatic neuromas into a prospective study in which amputees will be randomized to undergo TMR, RPNI, or VDMT and subsequently monitored for pain and disability for 1-year post-operatively. The investigators' specific aims are as follows: 1) Test the hypothesis that VDMTs are more effective than TMR and RPNIs with regards to treating pain and disability associated with symptomatic neuromas; 2) Provide the first level one, prospective data directly comparing the efficacy of TMR and RPNIs.
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Unphased

90 Participants Needed

Phantom limb pain (PLP) is a significant and pervasive issue among upper limb amputees, severely impacting their quality of life. The literature delineating prevalence of upper versus lower limb amputations is limited, but the prevalence of total amputations in the United States is estimated to reach 3 million individuals by 2050, with approximately 185,000 new cases annually. PLP affects 60-68% of these patients, leading to heightened levels of anxiety, depression, and reduced overall well-being.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

20 Participants Needed

This prospective study seeks to evaluate the effectiveness of prophylactic Targeted Brain Rehabilitation (TBR) in preventing or reducing Phantom Limb Pain (PLP).
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased
Age:13+

50 Participants Needed

Below-the-Knee Interventions for Limb Salvage: Use of Multifunctional Angioplasty Balloon Catheters ("BTK Multicath Registry") A non-randomized clinical registry This study is designed to obtain preliminary data on clinically relevant procedural variables during percutaneous below-knee artery revascularization procedures among consecutive patients treated with either the Finesse BTK Multicath® ("Finesse") or the standard of care using conventional angioplasty balloon catheters. This registry will enroll participants with a history of chronic limb threatening ischemia and below-knee arterial insufficiency who will be assigned to revascularization with or without use of the Finesse BTK Multicath. The registry is an acute study examining procedural data only. The primary endpoints of interest are the volume of contrast used for the intervention, overall procedure time, radiation dose, number of catheter exchanges during revascularization, and medical device supply costs. For the first phase 12 consecutive patients will be treated with the standard of care. For the second phase 12 consecutive patients will be treated with Finesse. 24 participants total Up to 5 study sites in the United States Initial anticipated enrollment: Q4 2024 Last anticipated enrollment: Q2 2025 Patients \>=18 years old with documented history of unilateral chronic limb threatening ischemia due to below-knee arterial insufficiency with angiographic runoff in the foot and limited arterial insufficiency above the knee 1. Contrast volume administered during the revascularization portion of a procedure. 2. Number of catheter exchanges during revascularization 3. Fluoroscopy time 4. Radiation dose during revascularization 5. Procedure time post-enrollment 6. Equipment costs 7. Reduced use of supplies 8. Technical success 9. Safety/Major Adverse Peripheral Events On-treatment sample Intention-to-treat
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased

24 Participants Needed

After amputation of an arm or leg, up to 90% of subjects experience a "phantom limb", a phenomenon characterized by persistent feelings of the missing limb. Many subjects with a phantom limb experience intense pain in the missing extremity that is often poorly responsive to medications or other interventions. The proposed work will contrast the efficacy of two virtual reality treatments for phantom limb pain: a 'Distractor' and an Active VR treatment. In the Distractor treatment, participants are engaged in a visually immersive virtual reality experience that does not require leg movements (REAL i-Series® immersive VR experience). In the Active VR treatment, subjects play a series of VR games using the virtual rendering of both legs.
No Placebo Group

Trial Details

Trial Status:Recruiting

40 Participants Needed

The study will investigate the application of a non-pharmacological operant conditioning approach to reduce phantom limb pain (PLP). PLP afflicts 60-90% people who have lost a limb. It can last for years and lead to drug dependence, job loss, and poor quality of life. Current non-pharmacological interventions are encouraging but limited, and their efficacy remains unclear. Limb amputation is known to lead to abnormal sensorimotor reorganization in the brain. Multiple studies have shown that PLP severity is correlated with the extent of this reorganization. The current study will train participants via realtime feedback of brain responses to promote more normal sensorimotor response, with the goal to reduce phantom limb pain.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

20 Participants Needed

This research is being done to determine if an anesthetic like Lidocaine, may be effective when injected around the sciatic nerve of the intact limb in patients with limb loss pain on the contralateral side.

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 4

20 Participants Needed

The investigators have designed a pragmatic trial of home-based transcranial direct current stimulation (tDCS) for phantom limb pain (PLP), the PLP-EVEREST trial (PLP-EffectiVEness pRagmatic Stimulation Trial) to test a portable device that would reach underrepresented populations and would validate this therapy in a more pragmatic setting. Subjects will be randomized to home-based tDCS of the primary motor cortex (M1) with somatosensory training or usual care only (including their current pharmacological treatments, physical therapy, and occupational therapy). The investigators will therefore test the effectiveness of home-based tDCS and somatosensory training in a real-world, home-based setting. The Investigator will compare patients randomized to this combined strategy vs. usual care alone (subjects from this group will be offered combined treatment at the end of the trial). The investigators hypothesize that the combined strategy will be associated with a significantly larger Cohen's d effect size (at least 1) compared to the control group.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

290 Participants Needed

Why Other Patients Applied

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31
Peripheral arterial disease (PAD) affects over 230 million adults worldwide and is a highly morbid, costly, and disabling condition. Ischemic leg pain drives disability in PAD patients and results from oxygen supply-demand mismatch, autonomic dysfunction, and muscle breakdown. This leg pain, which is unresponsive to traditional pharmacotherapy, limits the patient's tolerance to exercise, which is an important disease-modifying intervention. Spinal cord stimulation is a well-established therapy for medically intractable pain, including painful diabetic neuropathy (PDN) and ischemic pain, but is not part of the standard-of-care for PAD despite limited promising clinical data. Early studies used first-generation, tonic stimulation devices, but with these it was impossible to perform sham-controlled trials to test the treatment. Since then, new types of waveform treatments, including high-frequency spinal cord stimulation (SCS), have been shown to be more effective in the treatment of intractable pain. While high-frequency SCS is approved for PDN treatment, it has never been tested in the treatment of claudication pain from PAD. This study will enroll up to 15 participants between the ages of 19 and 89 who have PAD and PDN and are successfully implanted with a permanent SCS. Twelve weeks after SCS implantation, participants will receive two weeks of stimulation and two weeks of sham intervention, in random starting order. Blood flow, blood pressure, skin oxygen levels, and participant reported pain int the lower extremities will be assessed before SCS implantation, 12 weeks after SCS implantation and during each of the treatment periods. Participants will also complete a quality of life survey at the same time points. Comparisons of these measurements with the baseline and post-implantation measurements to determine the effects of SCS.

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased
Age:19 - 89

15 Participants Needed

The study is working to identify actions of surgeons in the operating room that can contribute to work-related musculoskeletal disorders. This includes poor positioning and time spent in poor positioning while working in the operating room. The study is also looking to determine if fatigue plays a role in work-related musculoskeletal disorders and whether an education intervention will change ergonomic risk.
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Unphased

30 Participants Needed

This trial tests a new dissolvable stent for patients with severe leg artery blockages. The stent helps improve blood flow, releases medicine to prevent re-blockage, and then dissolves gradually. This could reduce pain and lower the risk of amputation. Bioabsorbable stents have been extensively evaluated in coronary artery disease but remain challenging and less studied in lower extremities.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

30 Participants Needed

The purpose of this study is to examine the effect of targeted muscle reinnervation on the outcomes of amputees at a level 1 trauma center. The investigators propose to randomize all patients requiring amputation with and without targeted muscle reinnervation. This study will help delineate the efficacy of targeted muscle reinnervation in the general population.
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Unphased

50 Participants Needed

When a limb is severed, pain perceived in the part of the body that no longer exists often develops and is called "phantom limb" pain. Unfortunately, phantom pain goes away in only 16% of afflicted individuals, and there is currently no reliable definitive treatment. The exact reason that phantom limb pain occurs is unclear, but when a nerve is cut-as happens with an amputation-changes occur in the brain and spinal cord that actually increase with worsening phantom pain. These abnormal changes may often be corrected by putting local anesthetic-called a "nerve block"-on the injured nerve, effectively keeping any "bad signals" from reaching the brain with a simultaneous resolution of the phantom limb pain. However, when the nerve block resolves after a few hours, the phantom pain returns. But, this demonstrates that the brain abnormalities-and phantom pain-that occur with an amputation are not necessarily fixed, and may be dependent upon the "bad" signals being sent from the injured nerve(s), suggesting that a very long peripheral nerve block-lasting many months rather than hours-may permanently reverse the abnormal changes in the brain, and provide definitive relief from phantom pain. A prolonged nerve block lasting a few months may be provided by freezing the nerve using a process called "cryoneurolysis". The ultimate objective of the proposed research study is to determine if cryoanalgesia is an effective treatment for intractable post-amputation phantom limb pain. The proposed pilot study will include subjects with an existing above-knee amputation who experience intractable daily phantom limb pain. A single ultrasound-guided treatment of cryoneurolysis (or sham block-determined randomly like a flip of a coin) will be applied to the major nerves of the thigh. Although not required, each subject may return 4-6 months later for the alternative treatment (if the first treatment is sham, then the second treatment would be cryoneurolysis) so that all participants have the option of receiving the active treatment. Subjects will be followed for a total of 12 months with data collected by telephone.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

12 Participants Needed

DBS for Chronic Pain

San Francisco, California
Deep brain stimulation (DBS) holds promise as a new option for patients suffering from treatment-resistant chronic pain, but current technology is unable to reliably achieve long-term pain symptom relief. A "one-size-fits-all" approach of continuous, 24/7 brain stimulation has helped patients with some movement disorders, but the key to reducing pain may be the activation of stimulation only when needed, as this may help keep the brain from adapting to stimulation effects. By expanding the technological capabilities of an investigative brain stimulation device, the investigators will enable the delivery of stimulation only when pain signals in the brain are high, and then test whether this more personalized stimulation leads to reliable symptom relief for chronic pain patients over extended periods of time.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased
Age:21+

4 Participants Needed

Spinal cord associative plasticity (SCAP) is a combined cortical and spinal electrical stimulation technique developed to induce recovery of arm and hand function in spinal cord injury. The proposed study will advance understanding of SCAP, which is critical to its effective translation to human therapy. The purpose of the study is to: 1. Determine whether signaling through the spinal cord to the muscles can be strengthened by electrical stimulation. 2. Improve our understanding of the spinal cord and how it produces movement. 3. Determine whether spinal surgery to relieve pressure on the spinal cord can improve its function. Aim 1 is designed to advance mechanistic understanding of spinal cord associative plasticity (SCAP). Aim 2 will determine whether SCAP increases spinal cord excitability after the period of repetitive pairing. In rats, SCAP augments muscle activation for hours after just 5 minutes of paired stimuli. Whereas Aims 1 and 2 focused on the effects of paired stimulation in the context of uninjured spinal cord, Aim 3 assesses whether paired stimulation can be effective across injured cord segments. Aim 3 will incorporate the experiments from Aim 1 and 2 but in people with SCI, either traumatic or pre-operative patients with myelopathy in non-invasive experiments, or targeting myelopathic segments in intraoperative segments.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Early Phase 1

92 Participants Needed

The LIMBER UniLeg, a 3D printed single-piece transtibial prosthetic limb, is sufficiently equivalent to traditional passive prosthetic limbs (no motors or sensors), while reducing the cost and time of manufacturing and enabling global reach through the use of digital technologies to solve the worldwide prosthetic accessibility crisis. This is a single-site, Phase I, Clinical Research Study to test the effectiveness and safety of the LIMBER UniLeg. One study group of 30 participants involved for two months using a non-inferiority design in which the participant will be assessed using their normal device (1 month) and the study device (1 month).
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

30 Participants Needed

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Limb Pain clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Limb Pain clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Limb Pain trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Limb Pain is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Limb Pain medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Limb Pain clinical trials?

Most recently, we added Spinal Cord Stimulation for Phantom Limb Pain, Targeted Brain Rehabilitation for Phantom Limb Pain and Spinal Cord Stimulation for Diabetic Neuropathy to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Terms of Service·Privacy Policy·Cookies·Security