Leukemia

Tucson, AZ

134 Leukemia Trials near Tucson, AZ

Power is an online platform that helps thousands of Leukemia patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
This phase III trial compares the effect of adding levocarnitine to standard chemotherapy versus (vs.) standard chemotherapy alone in protecting the liver in patients with leukemia or lymphoma. Asparaginase is part of the standard of care chemotherapy for the treatment of acute lymphoblastic leukemia (ALL), lymphoblastic lymphoma (LL), and mixed phenotype acute leukemia (MPAL). However, in adolescent and young adults (AYA) ages 15-39 years, liver toxicity from asparaginase is common and often prevents delivery of planned chemotherapy, thereby potentially compromising outcomes. Some groups of people may also be at higher risk for liver damage due to the presence of fat in the liver even before starting chemotherapy. Patients who are of Japanese descent, Native Hawaiian, Hispanic or Latinx may be at greater risk for liver damage from chemotherapy for this reason. Carnitine is a naturally occurring nutrient that is part of a typical diet and is also made by the body. Carnitine is necessary for metabolism and its deficiency or absence is associated with liver and other organ damage. Levocarnitine is a drug used to provide extra carnitine. Laboratory and real-world usage of the dietary supplement levocarnitine suggests its potential to prevent or reduce liver toxicity from asparaginase. The overall goal of this study is to determine whether adding levocarnitine to standard of care chemotherapy will reduce the chance of developing severe liver damage from asparaginase chemotherapy in ALL, LL and/or MPAL patients.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:15 - 40

440 Participants Needed

This phase III trial studies whether inotuzumab ozogamicin added to post-induction chemotherapy for patients with High-Risk B-cell Acute Lymphoblastic Leukemia (B-ALL) improves outcomes. This trial also studies the outcomes of patients with mixed phenotype acute leukemia (MPAL), and B-lymphoblastic lymphoma (B-LLy) when treated with ALL therapy without inotuzumab ozogamicin. Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a type of chemotherapy called calicheamicin. Inotuzumab attaches to cancer cells in a targeted way and delivers calicheamicin to kill them. Other drugs used in the chemotherapy regimen, such as cyclophosphamide, cytarabine, dexamethasone, doxorubicin, daunorubicin, methotrexate, leucovorin, mercaptopurine, prednisone, thioguanine, vincristine, and pegaspargase or calaspargase pegol work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial will also study the outcomes of patients with mixed phenotype acute leukemia (MPAL) and disseminated B lymphoblastic lymphoma (B-LLy) when treated with high-risk ALL chemotherapy. The overall goal of this study is to understand if adding inotuzumab ozogamicin to standard of care chemotherapy maintains or improves outcomes in High Risk B-cell Acute Lymphoblastic Leukemia (HR B-ALL). The first part of the study includes the first two phases of therapy: Induction and Consolidation. This part will collect information on the leukemia, as well as the effects of the initial treatment, to classify patients into post-consolidation treatment groups. On the second part of this study, patients with HR B-ALL will receive the remainder of the chemotherapy cycles (interim maintenance I, delayed intensification, interim maintenance II, maintenance), with some patients randomized to receive inotuzumab. The patients that receive inotuzumab will not receive part of delayed intensification. Other aims of this study include investigating whether treating both males and females with the same duration of chemotherapy maintains outcomes for males who have previously been treated for an additional year compared to girls, as well as to evaluate the best ways to help patients adhere to oral chemotherapy regimens. Finally, this study will be the first to track the outcomes of subjects with disseminated B-cell Lymphoblastic Leukemia (B-LLy) or Mixed Phenotype Acute Leukemia (MPAL) when treated with B-ALL chemotherapy.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:1 - 25

4997 Participants Needed

This trial tests how well the drug imatinib works with different chemotherapy treatments for patients with specific types of leukemia. It aims to find out if a less intense chemotherapy regimen can be as effective as a stronger one but with fewer side effects. The study focuses on patients with certain types of acute lymphoblastic leukemia.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 21

475 Participants Needed

This study will compare the effects of Quizartinib versus placebo in combination with chemotherapy in participants with newly diagnosed FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD) negative acute myeloid leukemia (AML).
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

700 Participants Needed

The main objective of this study is to evaluate the efficacy of venetoclax in combination with azacitidine to improve Overall Survival (OS) in Acute Myeloid Leukemia (AML) participants compared to Best Supportive Care (BSC) when given as maintenance therapy following allogeneic stem cell transplantation (SCT). This study will have 2 parts: Part 1 (Dose Confirmation), which may include participants who are greater than or equal to 18 years old; Part 2 (Randomization) which may include participants who are greater than or equal to 12 years old. During Part 1, recommended Phase 3 dose of venetoclax in combination with azacitidine will be determined and during Part 2, the efficacy and safety of venetoclax with azacitidine (Part 2 Arm A) will be compared with BSC (Part 2 Arm B).
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:12+

465 Participants Needed

This randomized phase III trial studies how well combination chemotherapy works in treating young patients with newly diagnosed B acute lymphoblastic leukemia that is likely to come back or spread, and in patients with Philadelphia chromosome (Ph)-like tyrosine kinase inhibitor (TKI) sensitive mutations. Chemotherapy drugs, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) and giving the drugs in different doses and in different combinations may kill more cancer cells.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 31

5949 Participants Needed

This study will be conducted in two parts. Part 1 will be the Dose Confirmation portion to determine recommended Phase 3 dose (RPTD) of venetoclax in combination with azacitidine (AZA). Part 3 will be the Dose Finding portion to determine RPTD of venetoclax in combination with AZA. Part 2 and Part 3 Randomization of the study were removed.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

112 Participants Needed

This phase II trial studies the side effects and how well blinatumomab and combination chemotherapy or dasatinib, prednisone, and blinatumomab work in treating older patients with acute lymphoblastic leukemia. Immunotherapy with monoclonal antibodies, such as blinatumomab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as prednisone, vincristine sulfate, methotrexate, and mercaptopurine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Dasatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving blinatumomab with combination chemotherapy or dasatinib and prednisone may kill more cancer cells.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:65+

53 Participants Needed

This study aims to improve the treatment of blood cancer by using exercise to collect healthier immune cells from donors. Allogeneic adoptive cell therapy is a treatment where immune cells from a healthy donor are given to a cancer patient, usually to help prevent or treat cancer relapse after a stem cell transplant. These donor cells can either be directly infused into the patient or grown in a lab to create more specialized immune cells that target and kill cancer. While this therapy has been helpful for many patients, there is a need to make it more effective for a larger group and reduce side effects like graft-versus-host disease (GvHD), where the donor's immune cells attack the patient's healthy tissue. This Early Phase 1 trial will test whether exercise can help produce better immune cells from donors. The investigators will recruit healthy participants for three study groups: 1. Exercise Group: Participants will complete a 20-minute cycling exercise session. The investigators will collect blood samples before, during, and after exercise to study the number and quality of immune cells. The investigators will also use the collected cells to create immune therapies and test their ability to kill cancer cells in the lab and control cancer growth in mice. 2. Exercise and Beta Blocker Group: In this group, participants will complete up to five cycling sessions, with at least a week between each session. Before each session, participants will take either a placebo or a drug (beta blocker) that blocks stress hormones like adrenaline. The investigators will collect blood samples before and during exercise to see how blocking these hormones changes the effect of exercise on immune cells. 3. Isoproterenol Group: Participants in this group will receive a 20-minute infusion of isoproterenol, a drug that mimics the effects of adrenaline. The investigators will collect blood samples before, during, and after the infusion to see if the drug causes similar immune changes to those caused by exercise. Participants can join one, two, or all three groups. This research will help understand whether exercise can improve immune cell therapies for treating blood cancer and reduce the risk of GvHD, making these treatments safer and more effective.

Trial Details

Trial Status:Recruiting
Trial Phase:Early Phase 1
Age:21 - 55

100 Participants Needed

This trial compares two types of baby formulas and breast milk in infants over a few months. It aims to see if adding specific ingredients to formula can make the gut bacteria similar to that of breastfed babies.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:0 - 4

240 Participants Needed

This randomized phase III trial studies how well blinatumomab works compared with standard combination chemotherapy in treating patients with B-cell acute lymphoblastic leukemia that has returned after a period of improvement (relapsed). Immunotherapy with blinatumomab may allow the body's immune system to attack and destroy some types of leukemia cells. It is not yet known whether blinatumomab is more effective than standard combination chemotherapy in treating relapsed B-cell acute lymphoblastic leukemia.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 31

669 Participants Needed

This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:1 - 21

80 Participants Needed

This randomized phase III trial studies how well bortezomib and sorafenib tosylate work in treating patients with newly diagnosed acute myeloid leukemia. Bortezomib and sorafenib tosylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving bortezomib and sorafenib tosylate together with combination chemotherapy may be an effective treatment for acute myeloid leukemia.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:< 29

1645 Participants Needed

This randomized phase II/III trial studies how well azacitidine with or without nivolumab or midostaurin, or decitabine and cytarabine alone work in treating older patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Drugs used in chemotherapy, such as azacitidine, decitabine, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Midostaurin may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving azacitidine with or without nivolumab or midostaurin, or decitabine and cytarabine alone may kill more cancer cells.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Age:60+

76 Participants Needed

This randomized phase III trial is studying different combination chemotherapy regimens and their side effects and comparing how well they work in treating young patients with newly diagnosed T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which combination chemotherapy regimen is more effective in treating T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. After a common induction therapy, patients were risk assigned and eligible for one or both post-induction randomizations: Escalating dose Methotrexate versus High Dose Methotrexate in Interim Maintenance therapy, No Nelarabine versus Nelarabine in Consolidation therapy. T-ALL patients are risk assigned as Low Risk, Intermediate Risk or High Risk. Low Risk patients are not eligible for the Nelarabine randomization, Patients with CNS disease at diagnosis were assgined to receive High Dose Methotrexate, patients who failed induction therapy were assigned to receive Nelarabine and High Dose Methotrexate. T-LLy patients were all assigned to escalating dose Methotrexate and were risk assigned as Standard Risk, High Risk and induction failures. Standard risk patients did not receive nelarabine, High risk T-LLy patients were randomized to No Nelarabine versus Nelarabine, and Induction failures were assigned to receive Nelarabine.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Age:1 - 30

1895 Participants Needed

This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:< 21

1186 Participants Needed

Phase III, multicenter, randomized study with two arms (1:1 ratio) enrolling patients with AML relapsed/refractory after 2, 3, or 4 prior induction regimens: Experimental arm: DFP-10917 14-day continuous intravenous (IV) infusion at a dose of 6 mg/m²/day followed by a 14-day resting period per 28-day cycles. Control arm: Non-Intensive Reinduction (LoDAC, Azacitidine, Decitabine, Venetoclax Combination Regimens) or Intensive Reinduction (High and Intermediate Dose Cytarabine Regimens), depending on the patient's prior induction treatment.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

450 Participants Needed

Chronic lymphocytic leukemia (CLL) is the most common leukemia (cancer of blood cells). The purpose of this study is to assess the safety of venetoclax in combination with obinutuzumab or acalabrutinib in the treatment of CLL. Adverse events and change in disease activity will be assessed. Venetoclax in combination with obinutuzumab or acalabrutinib is being investigated in the treatment of CLL. Study doctors put the participants in 1 of 4 groups, called treatment arms. Participants will receive oral venetoclax in combination with intravenously (IV) infused obinutuzumab or oral acalabrutinib at in different dosing schemes as part of treatment. Approximately 170 adult participants with CLL who are being treated with venetoclax will be enrolled in the study in approximately 80 sites worldwide. Participants in Arm A will receive oral venetoclax in combination with IV infused obinutuzumab, with a 5 week venetoclax ramp up. Participants in Arm B will receive oral venetoclax in combination with oral acalabrutinib, with a 5 week venetoclax ramp up. Participants in Arm C and Arm D will receive oral venetoclax in combination with oral acalabrutinib, with differing venetoclax ramp up periods. The total study duration is approximately 28 months. There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at a hospital or clinic. The effect of the treatment will be checked by medical assessments, blood tests, checking for side effects and completing questionnaires.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

170 Participants Needed

This phase III trial studies how well ibrutinib and obinutuzumab with or without venetoclax work in treating patients with chronic lymphocytic leukemia. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Obinutuzumab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving ibrutinib, obinutuzumab, and venetoclax may work better than giving ibrutinib and obinutuzumab in treating patients with chronic lymphocytic leukemia.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

720 Participants Needed

This randomized phase III trial compares how well combination chemotherapy works when given with or without bortezomib in treating patients with newly diagnosed T-cell acute lymphoblastic leukemia or stage II-IV T-cell lymphoblastic lymphoma. Bortezomib may help reduce the number of leukemia or lymphoma cells by blocking some of the enzymes needed for cell growth. It may also help chemotherapy work better by making cancer cells more sensitive to the drugs. It is not yet known if giving standard chemotherapy with or without bortezomib is more effective in treating newly diagnosed T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 30

847 Participants Needed

Why Other Patients Applied

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51
This randomized phase III trial studies combination chemotherapy with blinatumomab to see how well it works compared to induction chemotherapy alone in treating patients with newly diagnosed breakpoint cluster region (BCR)-c-abl oncogene 1, non-receptor tyrosine kinase (ABL)-negative B lineage acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as blinatumomab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether combination chemotherapy is more effective with or without blinatumomab in treating newly diagnosed acute lymphoblastic leukemia.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:30 - 70

488 Participants Needed

This study will evaluate the long-term safety of pirtobrutinib in participants with previously treated chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL). The study is open to those who completed J2N-MC-JZNN/LOXO-BTK-20020 (NCT 04666038) for continued access to the study intervention or continued follow-up visits. Treatment will be given every 4 weeks and this study is expected to last about 5 years.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Phase 4

150 Participants Needed

This phase II MyeloMATCH treatment trial compares the usual treatment of azacitidine and venetoclax to the combination treatment of azacitidine, venetoclax and gilteritinib in treating older and unfit patients with acute myeloid leukemia and FLT3 mutations. Azacitidine is a drug that is absorbed into DNA and leads to the activation of cancer suppressor genes, which are genes that help control cell growth. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Gilteritinib is in a class of medications called kinase inhibitors. It works by blocking the action of a certain naturally occurring substance that may be needed to help cancer cells multiply. This study may help doctors find out if these different approaches are better than the usual approaches. To decide if they are better, the study doctors are looking to see if the study drugs lead to a higher percentage of patients achieving a deeper remission compared to the usual approach.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

147 Participants Needed

This phase II MyeloMATCH treatment trial tests whether the standard approach of cytarabine and daunorubicin in comparison to the following experimental regimens works to shrink cancer in patients with high risk acute myeloid leukemia (AML): 1) daunorubicin and cytarabine liposome alone; 2) cytarabine and daunorubicin with venetoclax; 3) azacitidine and venetoclax; 4) daunorubicin and cytarabine liposome and venetoclax. "High-risk" refers to traits that have been known to make the AML harder to treat. Cytarabine is in a class of medications called antimetabolites. It works by slowing or stopping the growth of cancer cells in the body. Daunorubicin is in a class of medications called anthracyclines. It also works by slowing or stopping the growth of cancer cells in the body. Azacitidine is in a class of medications called demethylation agents. It works by helping the bone marrow to produce normal blood cells and by killing abnormal cells. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. There is evidence that these newer experimental treatment regimens may work better in getting rid of more AML compared to the standard approach of cytarabine and daunorubicin.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:18 - 59

335 Participants Needed

This phase II MyeloMATCH treatment trial compares cytarabine with daunorubicin versus cytarabine with daunorubicin and venetoclax versus venetoclax with azacitidine for the treatment of younger patients with intermediate risk acute myeloid leukemia (AML). Cytarabine is a drug that inhibits some of the enzymes needed for deoxyribonucleic acid (DNA) replication and repair and can slow or stop the growth of cancer cells. Daunorubicin is a drug that blocks a certain enzyme needed for cell division and DNA repair, and it may kill cancer cells. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Azacitidine is a drug that interacts with DNA to activate tumor-suppressing genes, resulting in an anti-tumor effect. Adding venetoclax to cytarabine and daunorubicin, and adding venetoclax to azacitidine, may work better than the usual treatment of cytarabine with daunorubicin alone. To decide if they are better, the study doctors are looking to see if venetoclax increases the rate of elimination of AML in participants by 20% or more compared to the usual approach.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:18 - 59

153 Participants Needed

This study aims to use clinical and biological characteristics of acute leukemias to screen for patient eligibility for available pediatric leukemia sub-trials. Testing bone marrow and blood from patients with leukemia that has come back after treatment or is difficult to treat may provide information about the patient's leukemia that is important when deciding how to best treat it, and may help doctors find better ways to diagnose and treat leukemia in children, adolescents, and young adults.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:< 22

960 Participants Needed

This phase II trial studies how stopping tyrosine kinase inhibitors will affect treatment-free remission in patients with chronic myeloid leukemia in chronic phase. When the level of disease is very low, it's called molecular remission. TKIs are a type of medication that help keep this level low. However, after being in molecular remission for a specific amount of time, it may not be necessary to take tyrosine kinase inhibitors. It is not yet known whether stopping tyrosine kinase inhibitors will help patients with chronic myeloid leukemia in chronic phase continue or re-achieve molecular remission.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:< 25

110 Participants Needed

This phase Ib/II trial studies the side effects and best dose of pevonedistat and to see how well it works in combination with cytarabine and idarubicin in treating patients with acute myeloid leukemia. Pevonedistat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and idarubicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Given pevonedistat, cytarabine, and idarubicin may work better in treating patients with acute myeloid leukemia.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2

53 Participants Needed

This will be a multicenter Phase II open-label study of asciminib in CML-CP patients who have been previously treated with one prior ATP- binding site TKI with discontinuation due to treatment failure, warning or intolerance. (2L patient cohort). In addition, newly diagnosed CML-CP patients who may have received up to 4 weeks of prior TKI are included in a separate 1L patient cohort.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

34 Participants Needed

A Phase 2 Study to evaluate the Efficacy and Safety of ACP-196 (acalabrutinib) in Subjects with Relapsed/Refractory CLL and Intolerant of Ibrutinib Therapy
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

60 Participants Needed

Know someone looking for new options? Spread the word