Leukemia

Salina, KS

33 Leukemia Trials near Salina, KS

Power is an online platform that helps thousands of Leukemia patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
This phase II trial studies the side effects and how well blinatumomab and combination chemotherapy or dasatinib, prednisone, and blinatumomab work in treating older patients with acute lymphoblastic leukemia. Immunotherapy with monoclonal antibodies, such as blinatumomab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as prednisone, vincristine sulfate, methotrexate, and mercaptopurine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Dasatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving blinatumomab with combination chemotherapy or dasatinib and prednisone may kill more cancer cells.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:65+

53 Participants Needed

This phase II trial is studying the side effects of giving azacitidine together with gemtuzumab ozogamicin to see how well it works in treating older patients with previously untreated acute myeloid leukemia. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Azacitidine may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as gemtuzumab ozogamicin, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving azacitidine together with gemtuzumab ozogamicin may kill more cancer cells.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:60+

133 Participants Needed

This phase III trial studies how well ibrutinib and obinutuzumab with or without venetoclax work in treating patients with chronic lymphocytic leukemia. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Obinutuzumab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving ibrutinib, obinutuzumab, and venetoclax may work better than giving ibrutinib and obinutuzumab in treating patients with chronic lymphocytic leukemia.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

720 Participants Needed

This randomized phase III trial studies combination chemotherapy with blinatumomab to see how well it works compared to induction chemotherapy alone in treating patients with newly diagnosed breakpoint cluster region (BCR)-c-abl oncogene 1, non-receptor tyrosine kinase (ABL)-negative B lineage acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as blinatumomab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether combination chemotherapy is more effective with or without blinatumomab in treating newly diagnosed acute lymphoblastic leukemia.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:30 - 70

488 Participants Needed

This phase II trial studies how well azacitidine and venetoclax with or without pembrolizumab work in treating older patients with newly diagnosed acute myeloid leukemia. Chemotherapy drugs, such as azacitidine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving azacitidine and venetoclax with pembrolizumab may increase the rate of deeper/better responses and reduce the chance of the leukemia coming back in patients with newly diagnosed acute myeloid leukemia compared to conventional therapy of azacitidine and venetoclax alone.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:60+

60 Participants Needed

This phase II trial is studying the side effects of giving combination chemotherapy together with or without donor stem cell transplant and to see how well it works in treating patients with acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. Giving chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect).
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:18 - 60

97 Participants Needed

This randomized phase IIB trial studies imatinib mesylate at two different doses and dasatinib to see how well they work in treating patients with previously untreated chronic phase chronic myelogenous leukemia. Imatinib mesylate or dasatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

406 Participants Needed

This randomized phase III trial studies rituximab with bendamustine hydrochloride or ibrutinib to see how well they work compared to ibrutinib alone in treating older patients with previously untreated chronic lymphocytic leukemia. Rituximab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Chemotherapy drugs, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known whether rituximab with bendamustine hydrochloride may work better than rituximab and ibrutinib or ibrutinib alone in treating chronic lymphocytic leukemia.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:65+

547 Participants Needed

This phase III trial compares early treatment with venetoclax and obinutuzumab versus delayed treatment with venetoclax and obinutuzumab in patients with newly diagnosed high-risk chronic lymphocytic leukemia or small lymphocytic lymphoma. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Immunotherapy with monoclonal antibodies, such as obinutuzumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Starting treatment with the venetoclax and obinutuzumab early (before patients have symptoms) may have better outcomes for patients with chronic lymphocytic leukemia or small lymphocytic lymphoma compared to starting treatment with the venetoclax and obinutuzumab after patients show symptoms.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

247 Participants Needed

This phase III trial compares adding a new anti-cancer drug (venetoclax) to the usual treatment (ibrutinib plus obinutuzumab) in older patients with chronic lymphocytic leukemia who have not received previous treatment. The addition of venetoclax to the usual treatment might prevent chronic lymphocytic leukemia from returning. This trial also will investigate whether patients who receive ibrutinib plus obinutuzumab plus venetoclax and have no detectable chronic lymphocytic leukemia after 1 year of treatment, can stop taking ibrutinib. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotherapy with obinutuzumab may induce changes in body's immune system and may interfere with the ability of cancer cells to grow and spread. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving ibrutinib and obinutuzumab with venetoclax may work better at treating chronic lymphocytic leukemia compared to ibrutinib and obinutuzumab.
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:65+

465 Participants Needed

This phase III trial studies ibrutinib and rituximab to see how well they work compared to fludarabine phosphate, cyclophosphamide, and rituximab in treating patients with untreated chronic lymphocytic leukemia or small lymphocytic lymphoma. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. It is not yet known whether fludarabine phosphate, cyclophosphamide, and rituximab may work better than ibrutinib and rituximab in treating patients with untreated chronic lymphocytic leukemia or small lymphocytic lymphoma.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

529 Participants Needed

This MyeloMATCH Master Screening and Reassessment Protocol (MSRP) evaluates the use of a screening tool and specific laboratory tests to help improve participants' ability to register to clinical trials throughout the course of their myeloid cancer (acute myeloid leukemia or myelodysplastic syndrome) treatment. This study involves testing patients' bone marrow and blood for certain biomarkers. A biomarker (sometimes called a marker) is any molecule in the body that can be measured. Doctors look at markers to learn what is happening in the body. Knowing about certain markers can give doctors more information about what is driving the cancer and how to treat it. Testing patients' bone marrow and blood will show doctors if patients have markers that specific drugs can target. The marker testing in this study will let doctors know if they can match patients with a treatment study (myeloMATCH clinical trial) that tests treatment for the type of cancer they have or continue standard of care treatment with their doctor on the Tier Advancement Pathway (TAP).
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

2000 Participants Needed

This randomized phase II/III trial studies how well azacitidine with or without nivolumab or midostaurin, or decitabine and cytarabine alone work in treating older patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Drugs used in chemotherapy, such as azacitidine, decitabine, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Midostaurin may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving azacitidine with or without nivolumab or midostaurin, or decitabine and cytarabine alone may kill more cancer cells.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Age:60+

76 Participants Needed

This randomized phase II trial studies how well ruxolitinib phosphate, and bosutnib, dasatinib, imatinib or nilotinib, work in treating patients with chronic myeloid leukemia. Chronic myeloid leukemia cells produce a protein called BCR-ABL. The BCR-ABL protein helps chronic myeloid leukemia cells to grow and divide. Tyrosine kinase inhibitors, such as bosutinib, dasatinib, and nilotinib, stop the BCR-ABL protein from working, which helps to reduce the amount of chronic myeloid leukemia cells in the body. Ruxolitinib is a different type of drug that helps to stop the body from making substances called growth factors. Chronic myeloid leukemia cells need growth factors to grow and divide. The addition of ruxolitinib to the tyrosine kinase inhibitor may or may not help reduce the amount of chronic myeloid leukemia cells in the body.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

84 Participants Needed

This phase II trial studies how well pembrolizumab and dasatinib, imatinib mesylate, or nilotinib work in treating patients with chronic myeloid leukemia and persistent detection of minimal residual disease, defined as the levels of a gene product called bcr-abl in the blood. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of cancer cells to grow and spread. Dasatinib, imatinib mesylate, and nilotinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving pembrolizumab and dasatinib, imatinib mesylate, or nilotinib may work better in treating patients with chronic myeloid leukemia.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

40 Participants Needed

This phase Ib/II trial studies the side effects and best dose of venetoclax and how well it works when given together with vincristine in treating patients with T-cell or B-cell acute lymphoblastic leukemia that has come back (recurrent) or does not respond to treatment (refractory). Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Chemotherapy drugs, such as vincristine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving venetoclax together with vincristine may work better in treating patients with acute lymphoblastic leukemia compared to vincristine alone.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2

74 Participants Needed

This phase III trial studies whether inotuzumab ozogamicin added to post-induction chemotherapy for patients with High-Risk B-cell Acute Lymphoblastic Leukemia (B-ALL) improves outcomes. This trial also studies the outcomes of patients with mixed phenotype acute leukemia (MPAL), and B-lymphoblastic lymphoma (B-LLy) when treated with ALL therapy without inotuzumab ozogamicin. Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a type of chemotherapy called calicheamicin. Inotuzumab attaches to cancer cells in a targeted way and delivers calicheamicin to kill them. Other drugs used in the chemotherapy regimen, such as cyclophosphamide, cytarabine, dexamethasone, doxorubicin, daunorubicin, methotrexate, leucovorin, mercaptopurine, prednisone, thioguanine, vincristine, and pegaspargase or calaspargase pegol work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial will also study the outcomes of patients with mixed phenotype acute leukemia (MPAL) and disseminated B lymphoblastic lymphoma (B-LLy) when treated with high-risk ALL chemotherapy. The overall goal of this study is to understand if adding inotuzumab ozogamicin to standard of care chemotherapy maintains or improves outcomes in High Risk B-cell Acute Lymphoblastic Leukemia (HR B-ALL). The first part of the study includes the first two phases of therapy: Induction and Consolidation. This part will collect information on the leukemia, as well as the effects of the initial treatment, to classify patients into post-consolidation treatment groups. On the second part of this study, patients with HR B-ALL will receive the remainder of the chemotherapy cycles (interim maintenance I, delayed intensification, interim maintenance II, maintenance), with some patients randomized to receive inotuzumab. The patients that receive inotuzumab will not receive part of delayed intensification. Other aims of this study include investigating whether treating both males and females with the same duration of chemotherapy maintains outcomes for males who have previously been treated for an additional year compared to girls, as well as to evaluate the best ways to help patients adhere to oral chemotherapy regimens. Finally, this study will be the first to track the outcomes of subjects with disseminated B-cell Lymphoblastic Leukemia (B-LLy) or Mixed Phenotype Acute Leukemia (MPAL) when treated with B-ALL chemotherapy.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:1 - 25

4997 Participants Needed

The main purpose of the study was to investigate whether nilotinib treatment can be safely suspended with no recurrence of CML in selected patients who responded optimally on this treatment
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting

215 Participants Needed

The purpose of this study is to evaluate the efficacy and safety of acalabrutinib in combination with venetoclax and acalabrutinib in combination with venetoclax with and without obinutuzumab compared to chemoimmunotherapy in subjects with previously untreated CLL
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

984 Participants Needed

This phase II/III trial studies how well daunorubicin and cytarabine with or without uproleselan works in treating older adult patients with acute myeloid leukemia receiving intensive induction chemotherapy. Drugs used in chemotherapy, such as daunorubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Uproleselan may prevent cancer from returning or getting worse. Giving daunorubicin and cytarabine with uproleselan may work better in treating patients with acute myeloid leukemia compared to daunorubicin and cytarabine alone.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2, 3
Age:60+

264 Participants Needed

Why Other Patients Applied

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50
This study is designed to evaluate progression-free survival (PFS) endpoint for acalabrutinib versus (vs) ibrutinib in previously treated chronic lymphocytic leukemia.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

533 Participants Needed

This Primary objective is evaluating the efficacy of obinutuzumab in combination with chlorambucil (Arm A) compared with acalabrutinib in combination with obinutuzumab (Arm B) for the treatment of previously untreated chronic lymphocytic leukemia (CLL). Secondary objectives: 1) To evaluate the efficacy of obinutuzumab in combination with chlorambucil (Arm A) versus acalabrutinib monotherapy (Arm C) based on IRC assessment of PFS per IWCLL 2008 criteria. 2)To compare obinutuzumab plus chlorambucil (Arm A) versus acalabrutinib plus obinutuzumab (Arm B) and obinutuzumab plus chlorambucil (Arm A) versus acalabrutinib monotherapy (Arm C) in terms of: IRC-assessed objective response rate (ORR); Tine to next treatment (TTNT); Overall Survival (OS)
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

535 Participants Needed

This will be a multicenter Phase II open-label study of asciminib in CML-CP patients who have been previously treated with one prior ATP- binding site TKI with discontinuation due to treatment failure, warning or intolerance. (2L patient cohort). In addition, newly diagnosed CML-CP patients who may have received up to 4 weeks of prior TKI are included in a separate 1L patient cohort.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

34 Participants Needed

This trial tests JCAR017, a therapy using modified immune cells, in adults with hard-to-treat CLL or SLL. It aims to see if these enhanced immune cells can better fight the cancer.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2

320 Participants Needed

This randomized phase III trial studies lenalidomide to see how well it works with or without epoetin alfa in treating patients with myelodysplastic syndrome and anemia. Lenalidomide may stop the growth of myelodysplastic syndrome by blocking blood flow to the cells. Colony stimulating factors, such as epoetin alfa, may increase the number of immune cells found in bone marrow or peripheral blood. It is not yet known whether lenalidomide is more effective with or without epoetin alfa in treating patients with myelodysplastic syndrome and anemia.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

247 Participants Needed

Acute Myeloid Leukaemia (AML) is an aggressive and rare cancer of myeloid cells (a white blood cell responsible for fighting infections). Successful treatment of AML is dependent on what subtype of AML the participant has, and the age of the participant when diagnosed. Venetoclax is an experimental drug that kills cancer cells by blocking a protein (part of a cell) that allows cancer cells to stay alive. This study is designed to see if adding venetoclax to azacitidine works better than azacitidine on its own. This is a Phase 3, randomized, double-blind (treatment is unknown to participants and doctors), placebo controlled study in patients with AML who are \>= 18 or more years old and have not been treated before. Participants who take part in this study should not be suitable for standard induction therapy (usual starting treatment). AbbVie is funding this study which will take place at approximately 180 hospitals globally and enroll approximately 400 participants. In this study, 2/3 of participants will receive venetoclax every day with azacitidine and the remaining 1/3 will receive placebo (dummy) tablets with azacitidine. Participants will continue to have study visits and receive treatment for as long as they are having a clinical benefit. The effect of the treatment on AML will be checked by taking blood, bone marrow, scans, measuring side effects and by completing health questionnaires. Blood and bone marrow tests will be completed to see why some people respond better than others. Additional blood tests will be completed for genetic factors and to see how long the drug remains in the body.
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

443 Participants Needed

This phase II MyeloMATCH treatment trial compares the usual treatment of azacitidine and venetoclax to the combination treatment of azacitidine, venetoclax and gilteritinib in treating older and unfit patients with acute myeloid leukemia and FLT3 mutations. Azacitidine is a drug that is absorbed into DNA and leads to the activation of cancer suppressor genes, which are genes that help control cell growth. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Gilteritinib is in a class of medications called kinase inhibitors. It works by blocking the action of a certain naturally occurring substance that may be needed to help cancer cells multiply. This study may help doctors find out if these different approaches are better than the usual approaches. To decide if they are better, the study doctors are looking to see if the study drugs lead to a higher percentage of patients achieving a deeper remission compared to the usual approach.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

147 Participants Needed

This randomized phase II/III trial studies how well azacitidine works with or without lenalidomide or vorinostat in treating patients with higher-risk myelodysplastic syndromes or chronic myelomonocytic leukemia. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, stopping them from dividing, or by stopping them from spreading. Lenalidomide may stop the growth of cancer cells by stopping blood flow to the cancer. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known whether azacitidine is more effective with or without lenalidomide or vorinostat in treating myelodysplastic syndromes or chronic myelomonocytic leukemia.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

282 Participants Needed

This randomized pilot early phase I trial studies how well cholecalciferol works in treating patients with newly diagnosed non-Hodgkin lymphoma or chronic lymphocytic leukemia with low levels of vitamin D (vitamin D deficiency). Cholecalciferol may increase levels of vitamin D and improve survival in patients with non-Hodgkin lymphoma or chronic lymphocytic leukemia receiving standard of care chemotherapy.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Age:19+

197 Participants Needed

This is a global, Phase IIIb, multicenter, open-label, single-arm study to evaluate the safety and efficacy of acalabrutinib 100 mg twice daily (bid) in approximately 540 participants with chronic lymphocytic leukemia (CLL). Participants will be enrolled into 3 following cohorts: treatment-naive (TN), relapsed/refractory (R/R), and prior ibrutinib therapy. For this study, participants in the UK will be enrolled ONLY into the R/R cohort or the prior ibrutinib cohort. Participants in the US will be enrolled ONLY into the TN or R/R cohort. Participants will remain on study intervention until completion of 48 cycles (28 days per cycle), or until study intervention discontinuation due to, for example disease progression, or toxicity, withdrawal of consent, loss to follow-up, death, or study termination by the sponsor whichever occurs first. The duration of the study will be approximately 72 months from the first participant enrolled. This duration includes an estimated 24-month recruitment time and an assumed 48 cycles of study intervention (28 days per cycle); additional study time will be accrued during the Disease Follow up period for those participants remaining on study intervention after completion of 48 cycles prior to the final data cutoff (DCO) (the amount of time will vary by participant).
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

552 Participants Needed

Know someone looking for new options? Spread the word