High Grade Glioma Of The Brain

Current Location

43 High Grade Glioma Of The Brain Trials Near You

Power is an online platform that helps thousands of High Grade Glioma Of The Brain patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication

Nivolumab for Brain Tumors

New York, New York
The objective of this study is to determine response rates (partial and complete responses) to nivolumab of recurrent or progressive IDH mutant (grades 2, 3 or 4) gliomas with prior exposure to alkylating agents.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

20 Participants Needed

Single institution study to assess the safety of concurrent Azeliragon with craniospinal irradiation (CSI) in patients with leptomeningeal metastasis from solid tumor malignancies and high-grade gliomas.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

32 Participants Needed

Optune Device for Brain Cancer

Hackensack, New Jersey
This trial tests if a device using electric fields, combined with two drugs, can help children with aggressive brain tumors that have returned after treatment. The device stops cancer cells from growing, while the drugs damage the cancer cells and cut off their blood supply. This approach has been tested for many years and is used for various types of cancer, combining electric pulses with chemotherapy drugs to increase their effectiveness.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1
Age:5 - 21

7 Participants Needed

This is a multi-center, sequential cohort, open-label, volume and dose escalation study of the safety, tolerability, and distribution of 186RNL given by convection enhanced delivery to patients with recurrent or progressive malignant glioma after standard surgical, radiation, and/or chemotherapy treatment. The study uses a modified Fibonacci dose escalation, followed by an expansion at the maximum tolerated dose (MTD) to determine efficacy. The starting absorbed dose is 1mCi in a volume of 0.660mL.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2

55 Participants Needed

This clinical trial tests how well entrectinib works to treat patients less than 3 years of age with NTRK 1/2/3 or ROS1 fused, high grade glioma or other central nervous system (CNS) tumors.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:< 3

52 Participants Needed

RATIONALE: In this study a combination of anti-cancer drugs (chemotherapy) is used to treat brain tumors in young children. Using chemotherapy gives the brain more time to develop before radiation is given. The chemotherapy in this study includes the drug methotrexate. This drug was an important part of the two clinical trials which resulted in the best survival results for children less than 3 years of age with medulloblastoma. Most patients treated on this trial will also receive radiation which is carefully targeted to the area of the tumor. This type of radiation (focal conformal or proton beam radiotherapy) may result in fewer problems with thinking and learning than radiation to the whole brain and spinal cord. PURPOSE: This clinical trial is studying how well giving combination chemotherapy together with radiation therapy works in treating young patients with newly diagnosed central nervous system tumors.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:< 5

293 Participants Needed

The purpose of this study is to test the usefulness of imaging with radiolabeled methionine in the evaluation of children and young adults with tumor(s). Methionine is a naturally occurring essential amino acid. It is crucial for the formation of proteins. When labeled with carbon-11 (C-11), a radioactive isotope of the naturally occurring carbon-12, the distribution of methionine can be determined noninvasively using a PET (positron emission tomography) camera. C-11 methionine (MET) has been shown valuable in the monitoring of a large number of neoplasms. Since C-11 has a short half life (20 minutes), MET must be produced in a facility very close to its intended use. Thus, it is not widely available and is produced only at select institutions with access to a cyclotron and PET chemistry facility. With the new availability of short lived tracers produced by its PET chemistry unit, St. Jude Children's Research Hospital (St. Jude) is one of only a few facilities with the capabilities and interests to evaluate the utility of PET scanning in the detection of tumors, evaluation of response to therapy, and distinction of residual tumor from scar tissue in patients who have completed therapy. The investigators propose to examine the biodistribution of MET in patients with malignant solid neoplasms, with emphasis on central nervous system (CNS) tumors and sarcomas. This project introduces a new diagnostic test for the noninvasive evaluation of neoplasms in pediatric oncology. Although not the primary purpose of this proposal, the investigators anticipate that MET studies will provide useful clinical information for the management of patients with malignant neoplasms.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

503 Participants Needed

This is a phase I, open-Label, single/multiple dose, dose-escalation study to evaluate the safety, tolerability and antitumor activity of anti-B7-H3 CAR-T cell injection (TX103) in subjects with recurrent or progressive Grade 4 Glioma.The study also plan to explore the Maximum Tolerated Dose (MTD) and determine the Recommended Phase II Dose (RP2D) of the CAR-T cell therapy.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

52 Participants Needed

This clinical research will evaluate the diagnostic potential of fluorescein as visualized through an operating microscope relative to 1) contrast enhancement on co-registered preoperative MR scans, 2) intraoperative ALA-induced PpIX fluorescence and 3) gold-standard histology obtained from biopsy sampling during the procedure. Subjects will include those people with operable brain tumor with first-time presumed pre-surgical diagnosis of high-grade glioma or low-grade glioma.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:21+

30 Participants Needed

The goal of this study is to learn about a type of brain cancer called high-grade glioma. This study is for people who have previously received treatment for brain cancer, but the cancer has come back or gotten worse after treatment. The main question this study aims to answer is: is it safe for participants to take bicalutamide while receiving brain radiation treatment? Participants will: * Take bicalutamide every day for 6 months * Receive radiation treatment to the brain * Keep a diary of the when they take the bicalutamide and any side effects experienced * Visit the clinic once every 8 weeks for checkups and tests
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Phase 1
Age:19+

30 Participants Needed

The Investigators have demonstrated in preclinical studies that RNA liposomes activate APCs, induce antigen-specific T cell immunity, and can supplant DCs in a cell therapy model for HGG and have shown feasibility and activity of this approach in preclinical models and in canine patients with a spontaneous malignant glioma. In one arm of this study, we will investigate the safety and immunologic activity of RNA-LP vaccines in pediatric patients with recurrent pHGG. The investigators have also shown that intravenous administration of tumor mRNA loaded lipid particles (LPs) localizes primarily to lung, transfect antigen presenting cells (APCs) and lead to an activated T cell response for induction of anti-tumor immunity. In contrast to other formulations, RNA-LPs recruit multiple arms of the immune system (i.e. innate/adaptive), and remodel the systemic/intratumoral immune milieu, which remain potent barriers for vaccine, cellular, and checkpoint inhibiting immunotherapies. After only a single RNA-LP vaccine, the bulk of systemic and intratumoral dendritic cells (DCs) in mice display an activated phenotype; these activated DCs (harvested from tumors) expand antigen specific T cell immunity. In immunologically resistant pulmonary osteosacroma murine tumor models (i.e. K7M2), RNA-LPs induce robust anti-tumor efficacy in settings where immune checkpoint inhibitors (i.e. anti-PD-L1 therapy) do not confer therapeutic benefit. The investigators have already demonstrated safety of RNA-LPs in acute/chronic murine toxicity studies, and in client-owned canine trial. In this study, we will investigate the manufacturing feasibility, safety and immunologic activity of RNA-LP vaccine in patients with recurrent pulmonary or unresectable osteosarcoma and recurrent pHGG.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2
Age:3 - 39

36 Participants Needed

This is a phase I study to assess the safety and feasibility of IL-8 receptor modified patient-derived activated CD70 CAR T cell therapy in CD70+ pediatric high-grade glioma
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1
Age:4 - 18

18 Participants Needed

The purpose of this study is to determine whether newly diagnosed high-grade glioma(s) that cannot be removed surgically change as a result of the study treatment; and to identify and evaluate the potential side effects (good and bad) of the study treatment in patients with newly diagnosed high-grade glioma(s) that cannot be removed surgically.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

24 Participants Needed

Why Other Patients Applied

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do High Grade Glioma Of The Brain clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do High Grade Glioma Of The Brain clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across High Grade Glioma Of The Brain trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for High Grade Glioma Of The Brain is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a High Grade Glioma Of The Brain medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest High Grade Glioma Of The Brain clinical trials?

Most recently, we added G207 + Radiation for Pediatric Brain Tumor, Entrectinib for Brain Tumors and CAR T Cell Therapy for Brain Cancer to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security