Beta-thalassemia

Current Location

29 Beta-thalassemia Trials Near You

Power is an online platform that helps thousands of Beta-thalassemia patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
This trial is testing a new oral medicine called etavopivat in patients with sickle cell disease or thalassemia. The medicine helps red blood cells produce energy more efficiently. The goal is to reduce the need for blood transfusions and increase hemoglobin levels.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:12 - 65

60 Participants Needed

A Phase 3b, open-label, single-arm, rollover study to evaluate the long-term safety of luspatercept, to the following participants: * Participants receiving luspatercept on a parent protocol at the time of their transition to the rollover study, who tolerate the protocol-prescribed regimen in the parent trial and, in the opinion of the investigator, may derive clinical benefit from continuing treatment with luspatercept * Participants in the follow-up phase previously treated with luspatercept or placebo in the parent protocol will continue into long-term post-treatment follow-up in the rollover study until the follow-up commitments are met * The study design is divided into the Transition Phase, Treatment Phase and Follow-up Phase. Participants will enter transition phase and depending on their background will enter either the treatment phase or the Long-term Post-treatment Follow-up (LTPTFU) phase * Transition Phase is defined as one Enrollment visit * Treatment Phase: For participants in luspatercept treatment the dose and schedule of luspatercept in this study will be the same as the last dose and schedule in the parent luspatercept study. This does not apply to participants that are in long-term follow-up from the parent protocol * Follow-up Phase includes: - 42 Day Safety Follow-up Visit * During the Safety Follow up, the participants will be followed for 42 days after the last dose of luspatercept, for the assessment of safety-related parameters and adverse event (AE) reporting - Long-term Post-treatment Follow-up (LTPTFU) Phase * Participants will be followed for overall survival every 6 months for at least 5 years from first dose of luspatercept in the parent protocol, or 3 years of post-treatment from last dose, whichever occurs later, or until death, withdrawal of consent, study termination, or until a subject is lost to follow-up. Participants will also be monitored for progression to AML or any malignancies/pre-malignancies. New anticancer or disease related therapies should be collected at the same time schedule Participants transitioning from a parent luspatercept study in post-treatment follow-up (safety or LTPTFU) will continue from the same equivalent point in this rollover study. The ACE-536-LTFU-001 rollover study will be terminated, and relevant participants will discontinue from the study when all participants fulfill 5 years on the study, including treatment and follow-up.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

665 Participants Needed

This trial tests a new treatment called EDIT-301, which modifies a patient's own stem cells to treat severe beta Thalassemia. It targets adults who need regular blood transfusions. The goal is to fix their cells so they can produce healthy blood cells and reduce the need for transfusions.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2
Age:18 - 35

9 Participants Needed

Mitapivat for Thalassemia

Detroit, Michigan
The primary objective of this study was to compare the effect of mitapivat versus placebo on transfusion burden in participants with α- or β-transfusion-dependent thalassemia.
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

258 Participants Needed

Mitapivat for Thalassemia

Detroit, Michigan
This trial is testing mitapivat, a drug that may help improve anemia by making red blood cells healthier and last longer. It targets patients with a specific type of thalassemia who don't need regular blood transfusions but still suffer from anemia.
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

194 Participants Needed

This trial uses stem cells from mismatched donors with certain immune cells removed to treat patients with severe blood disorders who lack a perfect donor match. The approach aims to replace damaged cells, reduce complications, and support recovery with additional immune cells. A new technique has been developed to improve the treatment process.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:5 - 40

5 Participants Needed

This is a single-arm, open-label, multi-site, single-dose Phase 1/2/3 study in participans with transfusion-dependent β-thalassemia (TDT). The study will evaluate the safety and efficacy of autologous CRISPR-Cas9 Modified CD34+ Human Hematopoietic Stem and Progenitor Cells (hHSPCs) using CTX001.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2, 3
Age:12 - 35

59 Participants Needed

Hypothesis: Taurine, in combination with standard iron chelation therapy, is more effective than chelation therapy alone in reducing cardiac iron overload, oxidative stress and cardiac damage in β-Thalassemia. Protocol: Sixty subjects with transfusion dependent β-Thalassemia receiving deferasirox iron chelation therapy will be recruited and randomized in a 1:1 ratio to either (1) placebo and continuation of their iron chelation or (2) a combination of iron chelation plus taurine. Transfusion and safety visits will be scheduled monthly with clinical/biochemical assessment visits every three months. The efficacy of taurine combined with standard chelation therapy will be assessed at baseline and 12 months posttreatment by both cardiac T2\*MRI, and cardiac function. The recruitment period is projected to be 12 months from initiation.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

60 Participants Needed

Beta-thalassemias and hemoglobinopathies are serious inherited blood diseases caused by abnormal or deficiency of beta A chains of hemoglobin, the protein in red blood cells which delivers oxygen throughout the body.The diseases are characterized by hemolytic anemia, organ damage, and early mortality without treatment. Increases in another type of (normal) hemoglobin, fetal globin (HbF), which is normally silenced in infancy, reduces anemia and morbidity. Even incremental augmentation of fetal globin is established to reduce red blood cell pathology, anemia, certain complications, and to improve survival. This trial will evaluate an oral drug discovered in a high throughput screen, which increases fetal globin protein (HbF and red blood cells expressing HbF)and messenger ribonucleic acid (mRNA) to high levels in anemic nonhuman primates and in transgenic mice. The study drug acts by suppressing 4 repressors of the fetal globin gene promoter in progenitor cells from patients. The drug has been used for 50 years in a combination product for different actions - to enhance half-life and reduce side effects of a different active drug- and is considered safe for long-term use. This trial will first evaluate 3 dose levels in small cohorts of nontransfused patients with beta thalassemia intermedia. The most active dose will then be evaluated in larger subject groups with beta thalassemia and other hemoglobinopathies, such as sickle cell disease.
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Phase 1, 2

36 Participants Needed

Background: Sickle cell disease (SCD) is an inherited disorder of the blood. It can damage a person s organs and cause serious illness and death. A blood stem cell transplant is the only potential cure for SCD. Treatments that improve survival rates are needed. Objective: To find out if a new antibody drug (briquilimab, JSP191) improves the success of a blood stem cell transplant Eligibility: People aged 13 or older who are eligible for a blood stem cell transplant to treat SCD. Healthy family members over age 13 who are matched to transplant recipients are also needed to donate blood. Design: Participants receiving transplants will undergo screening. They will have blood drawn. They will have tests of their breathing and heart function. They may have chest x-rays. A sample of marrow will be collected from a pelvic bone. Participants will remain in the hospital about 30 days for the transplant and recovery. They will have a large intravenous line inserted into the upper arm or chest. The line will remain in place for the entire transplant and recovery period. The line will be used to draw blood as needed. It will also be used to administer the transplant stem cells as well as various drugs and blood transfusions. Participants will also receive some drugs by mouth. Participants must remain within 1 hour of the NIH for 3 months after transplant. During that time, they will visit the clinic up to 2 times a week. Follow-up visits will include tests to evaluate participants mental functions. They will have MRI scans of their brain and heart.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2
Age:4 - 100

40 Participants Needed

This trial tests the safety and tolerability of fostamatinib, a drug taken by mouth, in people aged 18 to 65 with stable sickle cell disease. Fostamatinib aims to reduce inflammation and abnormal blood cell behavior by inhibiting a specific protein. Participants will take the drug for several weeks and have frequent check-ups to monitor side effects and effectiveness.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1
Age:18 - 65

25 Participants Needed

This is a single-dose, open-label study in pediatric participants with TDT. The study will evaluate the safety and efficacy of autologous CRISPR-Cas9 modified CD34+ human hematopoietic stem and progenitor cells (hHSPCs) (CTX001).
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:2 - 11

15 Participants Needed

This trial tests if using low dose radiation and certain drugs can help patients with beta-thalassemia or sickle cell disease better accept donor stem cells. The treatment aims to suppress the immune system to reduce rejection of the new cells.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:4 - 80

56 Participants Needed

People with severe congenital anemias, such as sickle cell anemia and beta-thalassemia, have been cured with bone marrow transplantation (BMT). The procedure, however, is limited to children younger than the age of 16 because the risks are lower for children than for adults. The purpose of this study is to explore the use of a BMT regimen that, instead of chemotherapy, uses a low dose of radiation, combined with two immunosuppressive drugs. This type BMT procedure is described as nonmyeloablative, meaning that it does not destroy the patient s bone marrow. It is hoped that this type of BMT will be safe for patients normally excluded from the procedure because of their age and other reasons. To participate in this study, patients must be between the ages of 18 and 65 and have a sibling who is a well-matched stem-cell donor. Beyond the standard BMT protocol, study participants will undergo additional procedures. The donor will receive G-CSF by injection for five days; then his or her stem cells will be collected and frozen one month prior to BMT. Approximately one month later, the patient will be given two immune-suppressing drugs, Campath 1-H and Sirolimus, as well as a single low dose of total body irradiation and then the cells from the donor will be infused. Prior to their participation in this study, patients will undergo the following evaluations: a physical exam, blood work, breathing tests, heart-function tests, chest and sinus x-rays, and bone-marrow sampling. ...
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2
Age:2 - 80

130 Participants Needed

This trial tests a new treatment where a patient's own blood stem cells are modified to fix faulty genes. It targets patients with severe blood disorders who need frequent transfusions. The goal is to help their bodies produce healthy blood cells. Recent advances in treatment methods expand the potentially curative options for patients.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:12 - 35

26 Participants Needed

Gene Therapy for Beta Thalassemia

Philadelphia, Pennsylvania
The main goal of this study is to find out if the blood disorder called transfusion-dependent beta thalassemia can be safely treated by modifying blood stem cells. This is done by collecting blood stem cells from the subject, modifying those cells, adding a healthy beta globin gene, and then giving them back to the subject. It is hoped that these modified cells will decrease the need for blood transfusions. The gene modified blood stem cells are called CHOP-ALS20 ("study drug"). This experimental gene therapy has not been tried on human beings before and is not FDA approved.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:18 - 35

12 Participants Needed

This is a single arm pilot study of peripheral stem cell transplantation (PSCT) with ex vivo t-cell receptor alpha beta+(TCRαβ+) T cell and cluster of differentiation 19+ beta (CD19+ B) cell depletion of unrelated donor (URD) grafts using the CliniMACS device in patients with sickle cell disease (SCD) and beta thalassemia major (BTM).
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased
Age:2 - 25

9 Participants Needed

Hematopoietic Cell Transplantation/HCT involves receiving healthy blood-forming cells (stem cells) from a donor to replace the diseased or damaged cells in participants' bone marrow. The researchers think giving participants treatment with fludarabine and dexamethasone, drugs that lower the activity of the body's immune system (immune suppression), before standard conditioning therapy and HCT may help prevent serious side effects, including graft failure and GvHD. In this study, depending on how participants' body responds to the fludarabine and dexamethasone, the study doctor may decide participants should receive another drug, called cyclophosphamide, instead of fludarabine. In addition, depending on the results of participants' routine blood tests, participants may receive the drugs bortezomib and rituximab, which also help with immune suppression.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:2 - 50

24 Participants Needed

The goal of this clinical research study is to find out about the safety and effects of a drug called panobinostat when given to adults with sickle cell disease. Panobinostat is a pan histone deacetylase (HDAC) inhibitor. HDAC inhibitors have been shown to significantly increase hemoglobin F induction, which is well documented to improve outcomes in sickle cell disease. HDAC inhibitors are also known to potently inhibit cell-specific inflammation, which is a primary contributor to the debilitating effects of sickle cell disease. Given the relevance of these mechanisms of action in SCD, panobinostat may prove to contribute significantly to the management of SCD patients, a population in critical need of further effective treatment options.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

18 Participants Needed

This study is researching an experimental drug called REGN7999 (called "study drug"). The study is focused on patients with non-transfusion dependent beta-thalassemia. The aim of the study is to see how safe and effective the study drug is. The study is looking at several other research questions, including: * Whether the study drug lowers extra iron levels in the body * What side effects may happen from taking the study drug * How much study drug is in the blood at different times * Whether the body makes antibodies against the study drug (which could make the drug less effective or could lead to side effects)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:18 - 65

95 Participants Needed

Why Other Patients Applied

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58
The primary purpose of this study is to see if giving lower doses of chemotherapy (moderately ablative) will result in successful bone marrow replacement without as severe side-effects but with permanent control of the disease. Patients will receive a chemotherapy regimen with busulfan, fludarabine, and alemtuzumab followed by an infusion of stem cells, either from a family-related or cord-blood matched donor.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Age:1 - 30

53 Participants Needed

This trial uses a special machine to filter out harmful cells from donor blood to make stem cell transplants safer for young patients with non-cancerous diseases. By removing specific cells, it aims to prevent a serious immune reaction.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2
Age:< 40

37 Participants Needed

The purpose of this study is to learn more about the effects of (classification determinant) CD34+ stem cell selection on graft versus host disease (GVHD) in children, adolescents, and young adults. CD34+ stem cells are the cells that make all the types of blood cells in the body. GVHD is a condition that results from a reaction of transplanted donor T-lymphocytes (a kind of white blood cell) against the recipient's body and organs. Study subjects will be offered treatment involving the use of the CliniMACS® Reagent System (Miltenyi Biotec), a CD34+ selection device to remove T-cells from a peripheral blood stem cell transplant in order to decrease the risk of acute and chronic GVHD. This study involves subjects who are diagnosed with a malignant disease, that has either failed standard therapy or is unlikely to be cured with standard non-transplant therapy, who will receive a peripheral blood stem cell transplant. A malignant disease includes the following: Chronic Myeloid Leukemia (CML) in chronic phase, accelerated phase or blast crisis; Acute Myelogenous Leukemia (AML); Myelodysplastic Syndrome (MDS); Juvenile Myelomonocytic Leukemia (JMML); Acute Lymphoblastic Leukemia (ALL); or Lymphoma (Hodgkin's and Non-Hodgkin's).
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2
Age:< 22

14 Participants Needed

This trial is testing a drug called luspatercept in children with β-thalassemia to see if it is safe and how it works in their bodies. The study includes children who need regular blood transfusions and those who do not. Luspatercept helps the body make more red blood cells, which can lessen the need for transfusions. Luspatercept is a newly approved treatment for reducing the need for blood transfusions in adults.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:6 - 17

99 Participants Needed

The patient has inherited ß-thalassemia major through the genes. These genes have mistakes in them, so the body cannot make normal red blood cells. Stem cells are made in the bone marrow. They are the earliest form of blood cells. This study is being done to see if the investigators can make the stem cells produce normal red blood cells and hemoglobin. The investigators do this by collecting the stem cells. The genes with mistakes are removed from the cells. These cells are then treated so they have the corrected gene for making normal hemoglobin. These treated cells are given back to the patient through an injection (shot) in the vein. This is also known as gene transfer. In order for the body to accept these cells, the patient will need to receive a low dose of a drug called busulfan. It is a drug that will prepare the body to receive the new stem cells. This study will let the investigators know: * If it is safe to give the patient the treated stem cells * If the treated stem cells will go into the bone marrow without causing side effects. Gene transfer has been used for the past five years. It has been successful in treating many blood disorders. At least 20 patients have received the type of treatment that the patient will get on this study. This treatment for B-thalassemia major was developed at Memorial Sloan Kettering (MSK). It was studied for a long time in the lab before being given to patients.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

10 Participants Needed

Children, adolescents, and young adults with malignant and non-malignant conditionsundergoing an allogeneic stem cell transplantation (AlloSCT) will have the stem cells selected utilizing α/β CD3+/CD19+ cell depletion. All other treatment is standard of care.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:1 - 30

20 Participants Needed

This trial is studying how well stem cell transplants work for patients with blood diseases that are not cancer. The treatment involves giving patients healthy stem cells from a donor to replace their damaged or diseased cells. This method is the oldest and most widely used technique of stem cell transplant, primarily used to treat blood disorders.
No Placebo Group

Trial Details

Trial Status:Recruiting
Age:< 55

25 Participants Needed

A promising approach for the treatment of genetic diseases is called gene therapy. Gene therapy is a relatively new field of medicine that uses genetic material (mostly DNA) from the patient to treat his or her own disease. In gene therapy, the investigators introduce new genetic material in order to fix or replace a diseased gene, with the goal of curing the disease. The procedure is similar to a bone marrow transplant, in that the patient's malfunctioning blood stem cells are reduced or eliminated using chemotherapy, but it is different because instead of using a different person's (donor) blood stem cells for the transplant, the patient's own blood stem cells are given back after the new genetic material has been introduced into those cells. This approach has the advantage of eliminating any risk of Graft-Versus-Host Disease (GVHD), reducing the risk of graft rejection, and may also allow less chemotherapy to be utilized for the conditioning portion of the transplant procedure. The method used to fix or replace a diseased gene is called gene editing. A person's own cells are edited using a specialized biological medicine that has been formulated for use in human beings. Fetal hemoglobin (HbF) is a healthy, non-sickling kind of hemoglobin. Investigators have recently discovered a gene called BCL11A that is very important in the control of fetal hemoglobin expression. Increasing the expression of this gene in sickle cell patients could increase the amount of fetal hemoglobin while simultaneously reducing the amount of sickle hemoglobin in their blood, and therefore potentially cure the condition.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Phase 1
Age:13 - 40

10 Participants Needed

The investigators aims to evaluate the safety of in utero hematopoietic stem cell transplantation in fetuses with alpha-thalassemia major performed at the time of in utero transfusion of red blood cells.
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Age:18 - 26

10 Participants Needed

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Beta-thalassemia clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Beta-thalassemia clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Beta-thalassemia trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Beta-thalassemia is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Beta-thalassemia medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Beta-thalassemia clinical trials?

Most recently, we added Gene Therapy for Beta Thalassemia, Gene Therapy for Sickle Cell Anemia and Fostamatinib for Sickle Cell Disease to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Terms of Service·Privacy Policy·Cookies·Security