Type Condition

Current Location

2 Rpni Trials Near You

Power is an online platform that helps thousands of patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
Individuals with an above-knee lower limb amputation are known to walk more slowly, expend more energy, have a greater risk of falling, and have reduced quality of life compared to individuals without amputation and those with below knee amputation. One of the driving factors behind these deficits is the lack of active function provided by above-knee prostheses with prosthetic knees and ankles. While many prosthetic devices have been developed for functional restoration after major lower extremity amputation, there remains no stable interface to facilitate reliable, long-term volitional control of an advanced robotic limb capable moving multiple joints. Moreover, there is no existing interface that provides useful sensory feedback that in turn enhances the functional capabilities of the prosthesis. To achieve both greater signal specificity and long-term signal stability, we have developed a biologic interface known as the Regenerative Peripheral Nerve Interface (RPNI). An RPNI consists of a peripheral nerve that is implanted into a free muscle graft that would otherwise go unused in the residual limb. As the nerve grows, it reinnervates the free muscle graft which undergoes a predictable sequence of revascularization and regeneration. The main questions it aims to answer are: 1. Can the amplitude, movement specificity and stability of sciatic nerve RPNI electromyography (EMG) signals be detected up to one year post RPNI surgery? 2. Do RPNIs contain information to enable control of a physical motorized prosthetic leg with multiple degrees of freedom? 3. Does stimulation of sciatic nerve RPNIs provides meaningful sensory feedback? Consenting participants with unilateral transfemoral amputation (TFA) will: 1. Undergo RPNI surgery and electrode implantation in the residual limb. 2. Attend regular follow-up visits following surgery to assess the health and signal strength of the RPNIs and their ability to use a prescribed prosthesis between 3- and 12-months following implantation. 3. Undergo explantation of electrodes following the conclusion of data collection.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:22 - 75

3 Participants Needed

Amputees often suffer from relentless pain and disability resulting from symptomatic neuromas within the amputation stumps. When conservative measures fail to address these symptoms, two contemporary surgical approaches to treat symptomatic neuromas have become the most popular. Targeted muscle reinnervation (TMR) is a procedure which involves transferring the injured proximal nerve stump into a terminal nerve branch entering muscle, such that the axons from the proximal nerve stump will regenerate into the muscle and thereby prevent neuroma recurrence. Regenerative peripheral nerve interfaces (RPNIs) are muscle grafts placed on the proximal nerve stumps that serve as targets for the regenerating axons from the proximal nerve stumps. While TMR and RPNIs have demonstrated promise for the treatment of symptomatic neuromas, prospective comparative data comparing outcomes with these two approaches is lacking. The investigators have recently developed a novel approach to treat symptomatic neuromas that provides vascularized, denervated muscle targets (VDMTs) for the axons regenerating from the severed proximal nerve stump to reinnervate. This is accomplished by islandizing a segment of muscle on its blood supply and ensuring complete denervation prior to implanting the neighboring transected nerve stump into this muscle. VDMTs offer theoretical benefits in comparison to RPNIs and TMR that the investigators also aim to test in the proposed study. The investigators' objective is to enroll amputees with symptomatic neuromas into a prospective study in which amputees will be randomized to undergo TMR, RPNI, or VDMT and subsequently monitored for pain and disability for 1-year post-operatively. The investigators' specific aims are as follows: 1) Test the hypothesis that VDMTs are more effective than TMR and RPNIs with regards to treating pain and disability associated with symptomatic neuromas; 2) Provide the first level one, prospective data directly comparing the efficacy of TMR and RPNIs.
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Unphased

90 Participants Needed

Why Other Patients Applied

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do clinical trials pay?
Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.
How do clinical trials work?
After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length is 12 months.
How do I participate in a study as a "healthy volunteer"?
Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.
What does the "phase" of a clinical trial mean?
The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.
Do I need to be insured to participate in a medical study ?
Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.
What are the newest clinical trials ?
Most recently, we added Nerve Interfaces for Above-Knee Prosthetics and Surgical Treatments for Neuroma Pain to the Power online platform.
Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security