Condition
Suggested Conditions
  • Anxiety
  • Depression
  • Alzheimer's Disease
  • Weight Loss
  • Heart Disease
  • Cancer
  • Asthma
Location

5 Neuropace Rns System Trials Near You

Power is an online platform that helps thousands of patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
To demonstrate that the RNS System for thalamic stimulation is safe and effective as an adjunctive therapy for the reduction of primary generalized seizures in individuals 12 years of age or older who have drug-resistant idiopathic generalized epilepsy.
Stay on current meds
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:12+

100 Participants Needed

To generate preliminary safety and effectiveness data for brain-responsive neurostimulation of thalamocortical networks as an adjunctive therapy in reducing the frequency of generalized seizures in individuals 12 years of age or older with Lennox Gastaut Syndrome (LGS) who are refractory to antiseizure medications. The intent is to determine the feasibility and the optimal design of a subsequent pivotal study in order to expand the indication for use for the RNS System as a treatment for patients with medically intractable LGS.
Stay on current meds
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:12+

22 Participants Needed

Humans have a remarkable ability to flexibly interact with the environment. A compelling demonstration of this cognitive flexibility is human's ability to respond correctly to novel contextual situations on the first attempt, without prior rehearsal. The investigators refer to this ability as 'ad hoc self-programming': 'ad hoc' because these new behavioral repertoires are cobbled together on the fly, based on immediate demand, and then discarded when no longer necessary; 'self-programming' because the brain has to configure itself appropriately based on task demands and some combination of prior experience and/or instruction. The overall goal of our research effort is to understand the neurophysiological and computational basis for ad hoc self-programmed behavior. The previous U01 project (NS 108923) focused on how these programs of action are initially created. The results thus far have revealed tantalizing notions of how the brain represents these programs and navigates through the programs. In this proposal, therefore, the investigators focus on the question of how these mental programs are executed. Based on the preliminary findings and critical conceptual work, the investigators propose that the medial temporal lobe (MTL) and ventral prefrontal cortex (vPFC) creates representations of the critical elements of these mental programs, including concepts such as 'rules' and 'locations', to allow for effective navigation through the algorithm. These data suggest the existence of an 'algorithmic state space' represented in medial temporal and prefrontal regions. This proposal aims to understand the neurophysiological underpinnings of this algorithmic state space in humans. By studying humans, the investigators will profit from our species' powerful capacity for generalization to understand how such state spaces are constructed. The investigators therefore leverage the unique opportunities available in human neuroscience research to record from single cells and population-level signals, as well as to use intracranial stimulation for causal testing, to address this challenging problem. In Aim 1 the investigators study the basic representations of algorithmic state space using a novel behavioral task that requires the immediate formation of unique plans of action. Aim 2 directly compares representations of algorithmic state space to that of physical space by juxtaposing balanced versions of spatial and algorithmic tasks in a virtual reality (VR) environment. Finally, in Aim 3, the investigators test hypotheses regarding interactions between vPFC and MTL using intracranial stimulation.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:10 - 64

205 Participants Needed

Brain Implants for Blindness

Los Angeles, California
In this study, the investigators intend to evaluate the use of a commercially available neurostimulator system, NeuroPace RNS System to stimulate the visual cortex. The NeuroPace RNS System has a proven record of safety and reliability was approved by the FDA in November 2013. The RNS System is indicated for use in patients with epilepsy and includes a skull implanted neurostimulator. No modification to the RNS System is required for this study. This study will use this device to better understand the effect of stimulation on the visual parts of the brain. The main purposes of this study are to confirm the desired location to implant a device in the visual cortex, determine the amount of energy needed to elicit vision, and assess the nature of the vision that is produced. This information is important to have early in the process of designing a visual cortical prosthesis that could eventually be used for commercial use.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

5 Participants Needed

Deep Brain Stimulation for Depression

San Francisco, California
Neurons are specialized types of cells that are responsible for carrying out the functions of the brain. Neurons communicate with electrical signals. In diseases such as major depression this electrical communication can go awry. One way to change brain function is using electrical stimulation to help alter the communication between groups of neurons in the brain. The purpose of this study is to test a personalized approach to brain stimulation as an intervention for depression. The study researchers will use a surgically implanted device to measure each individual's brain activity related to his/her depression. The researchers will then use small electrical impulses to alter that brain activity and measure whether these changes help reduce depression symptoms. This study is intended for patients with major depression whose symptoms have not been adequately treated with currently available therapies. The device used in this study is called the NeuroPace Responsive Neurostimulation (RNS) System. It is currently FDA approved to treat patients with epilepsy. The study will test whether personalized responsive neurostimulation can safely and effectively treat depression.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:22 - 70

12 Participants Needed

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do clinical trials pay?
Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.
How do clinical trials work?
After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length is 12 months.
How do I participate in a study as a "healthy volunteer"?
Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.
What does the "phase" of a clinical trial mean?
The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.
Do I need to be insured to participate in a medical study ?
Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.
What are the newest clinical trials ?
Most recently, we added RNS System for Lennox-Gastaut Syndrome, Responsive Neurostimulation for Generalized Epilepsy and Brain Activity Monitoring for Epilepsy to the Power online platform.
Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security