Type Condition

Current Location

12 Inspiratory Muscle Training Trials Near You

Power is an online platform that helps thousands of patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
The investigators propose a randomized controlled trial to determine the effectiveness of inspiratory muscle training in improving exercise tolerance among stage 0-III obese breast cancer survivors.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Sex:Female

78 Participants Needed

In a randomized controlled trial, to study the utility of inspiratory muscle training (IMT) to improve functional outcomes in adults aged ≥70 years with heart failure (HF) who have been referred to palliative care for end-stage HF management. * The study team hypothesize that older HF patients will be able to use IMT safely, reliably, and effectively in a 12-week home-based training regimen. * The study team hypothesize that physical function (sit to stand, gait speed, grip strength), respiratory/pulmonary function, self-efficacy, fatigue and quality of life will increase among older HF patients randomized IMT versus those randomized to usual care.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:70+

30 Participants Needed

Recovery after lung transplantation (LTx) may be complicated by prolonged mechanical ventilation (MV) and protracted intensive care unit (ICU) stay leading to immobilization and impaired health-related quality of life (HRQoL). In the critical care setting, diaphragm atrophy and weakness have been associated with difficulty weaning from MV, increased risk for readmission to hospital or ICU, and increased mortality. Increasing respiratory muscle strength by inspiratory muscle training (IMT) as part of pre-rehabilitation mitigates respiratory muscle dysfunction peri-operatively and may reduce the risk of post-operative complications. However, IMT is not widely used prior to LTx and the benefits of pre-operative IMT on post-transplant outcomes in LTx candidates have not been studied. Objectives: (1) To evaluate the feasibility of a multicenter randomized clinical trial of IMT in LTx candidates in terms of recruitment rate, retention, program adherence, and outcome ascertainment; (2) To establish the change in pre-transplant dyspnea perception, diaphragm structure and function, health related quality of life (HRQoL) and post-transplant intensive care unit (ICU), hospital and post-transplant 3-month outcomes with IMT relative to usual care group; and (3) To characterize the effect of pre-transplant IMT on peri-transplant diaphragm myofibrillar cross-sectional area (CSA), oxidative capacity, inflammatory markers and post-transplant diaphragm muscle thickness and function (UHN TGH site).
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

90 Participants Needed

Respiratory muscle dysfunction is highly prevalent in patients with prolonged weaning from mechanical ventilation and is strongly associated with weaning failure. Efforts to strengthen the respiratory muscles, aimed at reversing or minimizing the impact of respiratory muscle weakness on clinical outcomes, have generally focused on the diaphragm with specific inspiratory muscle training (IMT) exercises. However, the effectiveness of these exercises and impact on clinical outcomes are not current practice in the majority of ICUs, as they are hardly feasible in ICU patients who often cannot be disconnected from the ventilator and cannot fully cooperate. Promising results have been published concerning non-respiratory training techniques, which can also target the accessory muscles, particularly important in the presence of increased load to the respiratory system, as in the case of the weaning phase. These non-respiratory training techniques would have the advantage of not entailing disconnection of the patient from the ventilator. In particular, in healthy subjects, a quasi-isometric neck contraction, called neck flexion, appeared to generate greater or comparable recruitment of some principal and accessory muscles of respiration, when compared to conventional IMT. However, this has not been studied in patients requiring prolonged mechanical ventilation, for whom IMT with threshold loading devices remains the primary recommended rehabilitation strategy. Therefore, the primary aim of the investigators is to assess the feasibility, tolerability, and safety of neck flexion and to compare them with IMT technique in patients with difficult and prolonged weaning from mechanical ventilation. Secondary aims are: i) to characterize which respiratory muscles are recruited and their level of activation at different levels of ventilatory assistance and ii) to assess which respiratory muscles are recruited and their level of activation during the two techniques and to compare these findings. The hypothesis of the investigators is that neck flexion will be feasible (more than conventional IMT), well tolerated, and safe in patients with difficult and prolonged weaning. The investigators also hypothesize that, reducing the level of assistance and during unassisted breathing, a progressively increasing activation of the diaphragm, neck and trunk respiratory muscles, reflecting increased ventilatory load, will be fund. Finally, the hypothesis of the investigators is that the level of muscle activation/recruitment during neck flexion will be comparable or even greater to that occurring during IMT, as found in healthy subjects. Finding a new and highly feasible rehabilitative technique, able to recruit and train the respiratory muscles (including accessory muscles), will have the potential to promote patients' weaning and improve all related clinical outcomes, and therefore to dramatically shift the paradigm about the role of rehabilitation in ICU.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:16+

10 Participants Needed

This is a single-center, randomized, SHAM-controlled, parallel assignment, double-masked,8-week interventional study among children aged 8-17 years (not yet 18 years old) of age with obesity and asthma. (n=60), recruited from Duke Health Center Creekstone, to test the effectiveness of inspiratory muscle rehabilitation (IMR) as an acceptable add-on intervention to reduce dyspnea (feeling short-of-breath or breathless) and to promote greater activity in children with obesity and asthma. Clinic to test the effectiveness of inspiratory muscle rehabilitation (IMR) as an acceptable add-on intervention to reduce dyspnea (feeling short-of-breath or breathless) and to promote greater activity in children with obesity
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:8 - 17

60 Participants Needed

The goal of this single-site, parallel-group, double-blind, sham-controlled randomized control trial is to examine the effect of high-intensity inspiratory muscle strength training (IMST) on coronary blood flow assessed using positron emission tomography coronary perfusion imaging in patients with coronary artery disease (CAD). The main question it aims to answer are: • if high-intensity IMST will improve coronary blood flow in patients with CAD, which could be assessed using positron emission tomography coronary perfusion imaging. Participants will be asked to complete the 8-week high-intensity or low-intensity IMST. Researchers will compare high and low-intensity IMST groups to see if coronary blood flow increases after IMST.

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

40 Participants Needed

This study is being done to determine how inspiratory muscle training impacts inspiratory muscle function during exercise in heart failure patients.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

68 Participants Needed

The purpose of this study is to understand if breathing muscle training combined with cardiac rehabilitation influences the blood flow and blood pressure response during exercise.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

42 Participants Needed

The purpose of this study is to determine whether inspiratory muscle strength training reduces blood pressure in adults with obesity.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:18 - 45

44 Participants Needed

The purpose of this research study is to evaluate effects of respiratory strengthening exercises on breathing function, in people who have orthopedic surgery. It is known that breathing function decreases for a few days after surgery. in In this study, we want to see if exercising before surgery strengthens the breathing muscles and improves recovery after surgery.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

36 Participants Needed

This clinical trial aims to assess the efficacy of inspiratory muscle strength training (IMST) guided by a smartphone app vs. IMST delivered in a clinical research setting for lowering systolic blood pressure in adults 18 years and older with elevated blood pressure. Participants will perform IMST for 5 minutes a day, 6 days a week, for 6 weeks.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

96 Participants Needed

This trial is testing a breathing exercise called high-resistance inspiratory muscle strength training (IMST) for postmenopausal women aged 50 and older with high blood pressure. IMST involves breathing in against resistance for a short period each day. It aims to lower blood pressure and improve blood vessel function by reducing harmful molecules and increasing helpful ones. High-resistance inspiratory muscle strength training (IMST) is a novel, time-efficient physical training modality.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:50+
Sex:Female

90 Participants Needed

Why Other Patients Applied

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security