Spastic Gait

Current Location

5 Spastic Gait Trials Near You

Power is an online platform that helps thousands of Spastic Gait patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
The goal of this clinical trial is to learn if operant conditioning can reduce spasticity in order to improve walking in stroke patient. The main questions it aims to answer are: * Can participants self-regulate reflex excitability * Can participants self-regulate reflex, reduce spasticity and improve walking Participants will undergo surface stimulation to evoke spinal reflexes and will be asked to control these reflexes therefore reducing spasticity. Researchers will compare result to able bodied participants to see if \[insert effects\]
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting

60 Participants Needed

The purpose of this study is to examine the reflex excitability of the rectus femoris in individuals with and without post-stroke Stiff-Knee gait. We use electrical stimulation of the peripheral nerve innervating the rectus femoris for a well-controlled reflex stimulus. We are investigating whether reflex excitability of the rectus femoris correlates with gait kinematics.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

60 Participants Needed

Stroke survivors with lower limb disability can improve their walking speed with high-intensity interval training (HIIT) rehabilitation therapy. However, some individuals may not respond to HIIT even when fully adherent to the program. To address this, the investigators propose to build a predictive model that identifies if a Veteran with chronic subcortical stroke will improve their walking speed with HIIT by incorporating blood lactate as an early predictor of exercise response, and inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and regional cerebral blood flow (CBF) as predictors of the brain's potential to respond, while also taking into consideration other factors such as comorbidities, demographics, and fitness levels.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

55 Participants Needed

Ambulatory children with cerebral palsy (CP) walk predominately in low intensity stride rates with little variability, thus limiting their walking activity and ability to participate in daily life. In contrast, typically developing (TD) children engage in short bursts of intense walking activity interspersed with varying intervals of low intensity walking within daily life. In order to optimize motor learning, active participation, task-specific training and multiple repetitions or massed practice is required to learn new motor skills. Short bursts of vigorous intensity locomotor treadmill training (SBLTT) alternating with low/moderate intensity was specifically designed to mimic activity patterns of TD children in a massed practice format. Pilot data suggests that SBLTT is feasible and enhances walking capacity and performance in daily life for children with CP. This project will examine the effect of SBLTT versus an equivalent dosage of traditional locomotor treadmill training (TLTT) on the primary outcomes of walking capacity and performance in children with CP and whether the effects of SBLTT on walking capacity and performance are mediated by improvements in in muscle power generation. The scientific premise is that SBLTT, that approximates the walking intensity patterns of typically developing (TD) children through a home-based massed practice protocol, will be more effective than TLTT in improving walking capacity and performance. We hypothesize that SBLTT strategies for children with CP modeled on walking patterns of TD children, will be positively mediated by muscle power generation and subsequently improve walking capacity and community walking performance and mobility. Specific aims. Aim #1. Determine the immediate and retention effects of short-burst interval LTT (SBLTT) on walking capacity in ambulatory children with CP. Aim #2. Examine the effects of treatment on community-based walking activity performance and mobility. Aim #3. Explore whether the effects of SBLTT on walking capacity and performance are mediated by muscle power generation. The proposed research will be the first step in a continuum of research that is expected to direct locomotor training protocols and rehab strategies across pediatric disabilities and positively effecting the community walking performance and mobility for children with CP.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased
Age:6 - 10

60 Participants Needed

Participants are being asked to participate in a research study conducted by Shih-Chiao Tseng, PT, Ph.D. at Texas Woman's University. This research study is to determine whether low-intensive brain stimulation can enhance learning of a leg movement task. The investigators also want to know if brain stimulation can improve the nerve function and walking performance. Our goal is to understand any relationship between brain stimulation and overall movement control improvement. Participants have been invited to join this research if they have had a stroke before or they are healthy adults aged 21 years or older. Research evidence shows stroke can induce permanent brain damage and therefore may cause a person to have trouble learning a new task. This in turn may significantly impact the recovery of motor function in stroke survivors. In addition, the investigators also want to know how a healthy person learns this new leg task and see if her/his learning pattern differs from a stroke survivor. This study comprises two phases: Phase I study investigates short-term effects of brain stimulation on leg skill learning and only requires two visits to TWU. The total time commitment for Phase I study will be about 6.5 hours, 3.5 hours on the first visit and three hours on the second visit; Phase II study is an expanded version of Phase I study to investigate long-term effects of brain stimulation on leg skill learning and requires to complete 12 visits of exercise training paired with brain stimulation over a four-week period and additional one visit for follow-up test. The total time commitment for Phase II study will be about 20 hours, a total of 18 hours for 12 exercise training sessions and two hours for a follow-up test. The investigators hypothesize that people with chronic stroke will show a slower rate of acquiring this leg skill as compared to healthy adults. The investigators also hypothesize that co-applying brain stimulation with 12 sessions of exercise training will enhance skill learning of this leg task for people with chronic stroke and this 12-session exercise program may exert beneficial influences on the nerve function and leg muscle activation, and consequentially improve motor control for walking.

Trial Details

Trial Status:Recruiting
Age:21 - 90

180 Participants Needed

Why Other Patients Applied

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Spastic Gait clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Spastic Gait clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Spastic Gait trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Spastic Gait is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Spastic Gait medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Terms of Service·Privacy Policy·Cookies·Security