Plasmacytoma

Current Location

16 Plasmacytoma Trials Near You

Power is an online platform that helps thousands of Plasmacytoma patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication

COM902 for Cancer

Columbus, Ohio
Phase 1 open label sequential dose escalation and cohort expansion study evaluating the safety, tolerability and preliminary antitumor activity of COM902 as monotherapy and in combination with COM701 in subjects with advanced malignancies.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

110 Participants Needed

This trial will evaluate the efficacy and safety of combination of pomalidomide (POM) and low-dose dexamethasone (LD-Dex) (Cohort A) or the combination of pomalidomide (POM) , daratumumab (DARA) and low-dose dexamethasone (LD-Dex) (Cohort B) in subjects with relapsed or refractory multiple myeloma who have received a first or second line treatment of lenalidomide-based therapy. This trial will test the hypothesis for Cohort A that the proportion of patients will have an Overall Response Rate (ORR) of \> 30 % to reveal that Pomalidomide is efficacious in pretreated patients who are refractory to lenalidomide. This trial will test the hypothesis for Cohort B that the proportion of patients will have an Overall Response Rate (ORR) of \> 70 % to reveal that POM+DARA+LD-Dex is efficacious in pretreated patients who are refractory to lenalidomide. This trial will test the hypothesis for Cohort C that the proportion of patients will have an Overall Response Rate (ORR) of \>60% to reveal that POM+DARA+LD-Dex is efficacious in pretreated patients who are refractory to lenalidomide. This treatment will be in only Japanese patients.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

186 Participants Needed

RATIONALE: Diagnostic procedures, such as 3'-deoxy-3'-\[18F\] fluorothymidine (FLT) PET imaging, may help find and diagnose cancer. It may also help doctors predict a patient's response to treatment and help plan the best treatment. PURPOSE: This phase I trial is studying FLT PET imaging in patients with cancer.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

80 Participants Needed

This phase II trial studies how well mezigdomide/carfilzomib/dexamethasone (MeziKD) works in treating patients with multiple myeloma (MM) that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory) and have tumors from myeloma cells outside the bone marrow in the soft tissues or organs of the body (extramedullary disease \[EMD\]). Mezigdomide blocks important processes in myeloma cells and may lead to modulation of the immune system, including activation of T-lymphocytes, and downregulation of the activity of other proteins, some of which play key roles in the proliferation of certain cancer cell types. Carfilzomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Dexamethasone is a type of corticosteroid and is used to kill myeloma cells. It is used with other drugs to treat multiple myeloma. Giving MeziKD may kill more cancer cells in patients with relapsed/refractory multiple myeloma (RRMM) with EMD.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

28 Participants Needed

This trial is testing a combination of two drugs and radiation therapy to treat patients with plasmacytoma. The drugs help stop cancer growth and boost the immune system, while radiation kills the cancer cells.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

21 Participants Needed

This trial is testing a type of radiation therapy for patients with multiple myeloma who did not respond to a previous cell therapy. The radiation aims to kill the remaining cancer cells by damaging their DNA.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

30 Participants Needed

This phase I/II trial tests the safety and effectiveness of extramedullary disease (EMD)-directed external beam radiation therapy (EBRT) in combination with talquetamab for the treatment of multiple myeloma patients with extramedullary disease. Extramedullary disease in multiple myeloma involves the infiltration of organs and soft tissues by malignant plasma cells and has proven difficult to treat. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink cancers. EBRT is a type of radiation therapy that delivers high-energy beams to the cancer from outside of the body. In this trial, the EBRT will be directed to a site of extramedullary disease. Talquetamab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Combining EMD-directed EBRT with talquetamab may be safe, tolerable, and/or effective in treating multiple myeloma patients with extramedullary disease.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Phase 1, 2

20 Participants Needed

This trial is testing a new drug called SAR443579 to see if it is safe and effective for treating blood cancers. The study will look at how the drug moves through and affects the body, and whether it can help fight cancer. Patients with various types of blood cancers are participating in this study.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:1+

169 Participants Needed

Tagraxofusp is a protein-drug conjugate consisting of a diphtheria toxin redirected to target CD123 has been approved for treatment in pediatric and adult patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN). This trial aims to examine the safety of this novel agent in pediatric patients with relapsed/refractory hematologic malignancies. The mechanism by which tagraxofusp kills cells is distinct from that of conventional chemotherapy. Tagraxofusp directly targets CD123 that is present on tumor cells, but is expressed at lower or levels or absent on normal hematopoietic stem cells. Tagraxofusp also utilizes a payload that is not cell cycle dependent, making it effective against both highly proliferative tumor cells and also quiescent tumor cells. The rationale for clinical development of tagraxofusp for pediatric patients with hematologic malignancies is based on the ubiquitous and high expression of CD123 on many of these diseases, as well as the highly potent preclinical activity and robust clinical responsiveness in adults observed to date. This trial includes two parts: a monotherapy phase and a combination chemotherapy phase. This design will provide further monotherapy safety data and confirm the FDA approved pediatric dose, as well as provide safety data when combined with chemotherapy. The goal of this study is to improve survival rates in children and young adults with relapsed hematological malignancies, determine the recommended phase 2 dose (RP2D) of tagraxofusp given alone and in combination with chemotherapy, as well as to describe the toxicities, pharmacokinetics, and pharmacodynamic properties of tagraxofusp in pediatric patients. About 54 children and young adults will participate in this study. Patients with Down syndrome will be included in part 1 of the study.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1
Age:1 - 21

54 Participants Needed

This phase I trial studies the side effects and best doses of cabozantinib s-malate and nivolumab with or without ipilimumab in treating patients with genitourinary (genital and urinary organ) tumors that have spread from where it first started (primary site) to other places in the body (metastatic). Cabozantinib s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether giving cabozantinib s-malate and nivolumab alone or with ipilimumab works better in treating patients with genitourinary tumors.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

152 Participants Needed

This phase II trial studies how well cabozantinib works in combination with nivolumab and ipilimumab in treating patients with rare genitourinary (GU) tumors that has spread from where it first started (primary site) to other places in the body. Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib, nivolumab, and ipilimumab may work better in treating patients with genitourinary tumors that have no treatment options compared to giving cabozantinib, nivolumab, or ipilimumab alone.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

314 Participants Needed

This study will evaluate the safety, tolerability, and efficacy of Orca-T, an allogeneic stem cell and T-cell immunotherapy biologic manufactured for each patient (transplant recipient) from the mobilized peripheral blood of a specific, unique donor. It is composed of purified hematopoietic stem and progenitor cells (HSPCs), purified regulatory T cells (Tregs), and conventional T cells (Tcons) in participants undergoing myeloablative allogeneic hematopoietic cell transplant transplantation for hematologic malignancies.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

255 Participants Needed

This phase II trial studies how well naive T-cell depletion works in preventing chronic graft-versus-host disease in children and young adults with blood cancers undergoing donor stem cell transplant. Sometimes the transplanted white blood cells from a donor attack the body's normal tissues (called graft versus host disease). Removing a particular type of T cell (naive T cells) from the donor cells before the transplant may stop this from happening.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:6 - 26

68 Participants Needed

This phase II trial is for patients with acute lymphocytic leukemia, acute myeloid leukemia, myelodysplastic syndrome or chronic myeloid leukemia who have been referred for a peripheral blood stem cell transplantation to treat their cancer. In these transplants, chemotherapy and total-body radiotherapy ('conditioning') are used to kill residual leukemia cells and the patient's normal blood cells, especially immune cells that could reject the donor cells. Following the chemo/radiotherapy, blood stem cells from the donor are infused. These stem cells will grow and eventually replace the patient's original blood system, including red cells that carry oxygen to our tissues, platelets that stop bleeding from damaged vessels, and multiple types of immune-system white blood cells that fight infections. Mature donor immune cells, especially a type of immune cell called T lymphocytes (or T cells) are transferred along with these blood-forming stem cells. T cells are a major part of the curative power of transplantation because they can attack leukemia cells that have survived the chemo/radiation therapy and also help to fight infections after transplantation. However, donor T cells can also attack a patient's healthy tissues in an often-dangerous condition known as Graft-Versus-Host-Disease (GVHD). Drugs that suppress immune cells are used to decrease the severity of GVHD; however, they are incompletely effective and prolonged immunosuppression used to prevent and treat GVHD significantly increases the risk of serious infections. Removing all donor T cells from the transplant graft can prevent GVHD, but doing so also profoundly delays infection-fighting immune reconstitution and eliminates the possibility that donor immune cells will kill residual leukemia cells. Work in animal models found that depleting a type of T cell, called naïve T cells or T cells that have never responded to an infection, can diminish GVHD while at least in part preserving some of the benefits of donor T cells including resistance to infection and the ability to kill leukemia cells. This clinical trial studies how well the selective removal of naïve T cells works in preventing GVHD after peripheral blood stem cell transplants. This study will include patients conditioned with high or medium intensity chemo/radiotherapy who can receive donor grafts from related or unrelated donors.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:< 60

84 Participants Needed

MGD024 for Blood Cancers

Grand Rapids, Michigan
This trial is testing a new drug called MGD024 in patients with certain blood cancers that haven't responded to other treatments. Researchers want to see if MGD024 is safe, how it works in the body, and if it helps fight cancer. Patients will receive the drug periodically, and their response will be monitored regularly.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

130 Participants Needed

IMGN632 for BPDCN

Buffalo, New York
This is an open-label, multi-center, Phase 1/2 study to determine the MTD and assess the safety, tolerability, PK, immunogenicity, and anti-leukemia activity of IMGN632 when administered as monotherapy to patients with CD123+ disease.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2

179 Participants Needed

Why Other Patients Applied

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Plasmacytoma clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Plasmacytoma clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Plasmacytoma trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Plasmacytoma is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Plasmacytoma medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Plasmacytoma clinical trials?

Most recently, we added Radiation Therapy + Talquetamab for Multiple Myeloma, MeziKD for Multiple Myeloma and Tagraxofusp for Blood Cancers to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security