Myeloid Leukemia

Current Location

86 Myeloid Leukemia Trials Near You

Power is an online platform that helps thousands of Myeloid Leukemia patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
This phase I trial studies the side effects and the best dose of bortezomib and sorafenib tosylate when given together with decitabine in treating patients with acute myeloid leukemia. Bortezomib and sorafenib tosylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving bortezomib and sorafenib tosylate together with decitabine may work better in treating acute myeloid leukemia.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

15 Participants Needed

The objective of this study to evaluate the safety, tolerability, pharmacokinetic profile, and preliminary efficacy of BL-M11D1 in patients with relapsed/refractory acute myeloid leukemia.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

120 Participants Needed

CC-91633 for Leukemia

Columbus, Ohio
This trial tests a new drug, CC-91633, for patients with certain blood cancers that haven't responded to other treatments. Researchers will find the safest dose by increasing it over time and checking for side effects and effectiveness.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

180 Participants Needed

This trial studies the side effects of nivolumab in combination with decitabine and venetoclax and to see how well they work in treating patients with TP53-mutated acute myeloid leukemia. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as decitabine and venetoclax, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This study is being done to find out whether giving nivolumab, decitabine, and venetoclax is better or worse than the usual approach for TP53-mutated acute myeloid leukemia.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting

1 Participants Needed

The purpose of this study is to determine the clinical benefit of ASP2215 therapy in participants with FMS-like tyrosine kinase (FLT3) mutated acute myeloid leukemia (AML) who are refractory to or have relapsed after first-line AML therapy as shown with overall survival (OS) compared to salvage chemotherapy, and to determine the efficacy of ASP2215 therapy as assessed by the rate of complete remission and complete remission with partial hematological recovery (CR/CRh) in these participants. This study will also determine the overall efficacy in event-free survival (EFS) and complete remission (CR) rate of ASP2215 compared to salvage chemotherapy.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting

371 Participants Needed

Tamibarotene is being studied as a treatment for participants with a type of leukemia called acute myeloid leukemia, or AML for short. Tamibarotene is being studied as a treatment for participants with AML whose cancer has a specific genetic abnormality characterized by the overexpression of the retinoic acid receptor alpha (RARA) gene. This genetic profile is found in about 3 of every 10 people with AML. During the trial, tamibarotene will be given with 2 other drugs that are already used together to treat people who have AML and who cannot start treatment with standard chemotherapy.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting

95 Participants Needed

This research study is evaluating whether primary palliative care is an alternative strategy to specialty palliative care for improving quality of life, symptoms, mood, coping, and end of life outcomes in patients with acute myeloid leukemia (AML).
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

2300 Participants Needed

This phase III trial compares the effect of adding levocarnitine to standard chemotherapy versus (vs.) standard chemotherapy alone in protecting the liver in patients with leukemia or lymphoma. Asparaginase is part of the standard of care chemotherapy for the treatment of acute lymphoblastic leukemia (ALL), lymphoblastic lymphoma (LL), and mixed phenotype acute leukemia (MPAL). However, in adolescent and young adults (AYA) ages 15-39 years, liver toxicity from asparaginase is common and often prevents delivery of planned chemotherapy, thereby potentially compromising outcomes. Some groups of people may also be at higher risk for liver damage due to the presence of fat in the liver even before starting chemotherapy. Patients who are of Japanese descent, Native Hawaiian, Hispanic or Latinx may be at greater risk for liver damage from chemotherapy for this reason. Carnitine is a naturally occurring nutrient that is part of a typical diet and is also made by the body. Carnitine is necessary for metabolism and its deficiency or absence is associated with liver and other organ damage. Levocarnitine is a drug used to provide extra carnitine. Laboratory and real-world usage of the dietary supplement levocarnitine suggests its potential to prevent or reduce liver toxicity from asparaginase. The overall goal of this study is to determine whether adding levocarnitine to standard of care chemotherapy will reduce the chance of developing severe liver damage from asparaginase chemotherapy in ALL, LL and/or MPAL patients.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3
Age:15 - 40

440 Participants Needed

This phase II trial studies the side effects and how well blinatumomab and combination chemotherapy or dasatinib, prednisone, and blinatumomab work in treating older patients with acute lymphoblastic leukemia. Immunotherapy with monoclonal antibodies, such as blinatumomab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as prednisone, vincristine sulfate, methotrexate, and mercaptopurine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Dasatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving blinatumomab with combination chemotherapy or dasatinib and prednisone may kill more cancer cells.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:65+

53 Participants Needed

This MyeloMATCH Master Screening and Reassessment Protocol (MSRP) evaluates the use of a screening tool and specific laboratory tests to help improve participants' ability to register to clinical trials throughout the course of their myeloid cancer (acute myeloid leukemia or myelodysplastic syndrome) treatment. This study involves testing patients' bone marrow and blood for certain biomarkers. A biomarker (sometimes called a marker) is any molecule in the body that can be measured. Doctors look at markers to learn what is happening in the body. Knowing about certain markers can give doctors more information about what is driving the cancer and how to treat it. Testing patients' bone marrow and blood will show doctors if patients have markers that specific drugs can target. The marker testing in this study will let doctors know if they can match patients with a treatment study (myeloMATCH clinical trial) that tests treatment for the type of cancer they have or continue standard of care treatment with their doctor on the Tier Advancement Pathway (TAP).
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

2000 Participants Needed

This trial is testing if adding pomalidomide to standard chemotherapy can improve treatment for patients with a specific type of newly diagnosed leukemia. Pomalidomide works by cutting off the blood supply to cancer, boosting the immune system, and killing cancer cells. The chemotherapy drugs attack cancer cells in multiple ways. Pomalidomide is related to thalidomide and has shown remarkable activity in patients who did not respond to other treatments.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

50 Participants Needed

Phase 1 dose escalation will determine the maximum tolerated dose (MTD) and recommended Phase 2 dose (RP2D) of revumenib in participants with acute leukemia. In Phase 2, participants will be enrolled in 3 indication-specific expansion cohorts to determine the efficacy, short- and long-term safety, and tolerability of revumenib.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:30+

413 Participants Needed

This is a multicenter, open-label, Phase 1/2a dose escalation and expansion study of orally administered emavusertib (CA-4948) monotherapy in adult patients with AML or higher- risk Myelodysplastic Syndrome (hrMDS). Patients enrolling in the Phase 1 dose escalation of the study must meet one of the following criteria prior to consenting to the study: * Relapse/refractory (R/R) AML with FMS-like tyrosine kinase-3 (FLT3) mutations who have been previously treated with a FLT3 inhibitor * R/R AML with spliceosome mutations of splicing factor 3B subunit 1 (SF3B1) or U2AF1 * R/R hrMDS with spliceosome mutations of SF3B1 or U2 small nuclear RNA auxiliary factor 1 (U2AF1) * Number of pretreatments: 1 or 2 The Phase 2a Dose Expansion will be in 3 Cohorts of patients: 1. R/R AML with FLT3 mutations who have been previously treated with a FLT3 inhibitor; 2. R/R AML with spliceosome mutations of SF3B1 or U2AF1; and 3. R/R hrMDS (Revised International Prognostic Scoring System \[IPSS-R\] score \> 3.5) with spliceosome mutations of SF3B1 or U2AF1. All patients above have had ≤ 2 lines of prior systemic anticancer treatment. In previous versions of this protocol there was a Phase 1b portion of the study, in which patients with AML or hrMDS received CA-4948 in combination with venetoclax. This part of the study is no longer open for enrollment.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2

366 Participants Needed

This is a Phase 1b open-label, multicenter, dose-escalation and dose-optimization study designed to evaluate the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and anti-tumor efficacy of eganelisib as monotherapy and in combination with cytarabine in patients with relapsed/refractory (r/r) acute myeloid leukemia (AML) or r/r higher-risk myelodysplastic syndromes (HR-MDS). The study consists of 2 parts: * Part 1: Dose Escalation (DE) in both monotherapy and in combination. * Part 2: Dose Optimization
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

125 Participants Needed

This study aim is to assess, if treosulfan pharmacokinetics are influenced by declined renal function and by race/ethnicity of patients. The study also aims to determine an appropriate safe dose of treosulfan, when patient's renal function is impaired. The participants of this study are undergoing allogenic hematopoietic stem cell transplantation for treatment of acute myeloid leukemia or myelodysplastic syndrome.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

36 Participants Needed

A Phase 1 Open-label, Multi-center Study of the Safety, Pharmacokinetics (PK), and Anti-tumor Activity of LYT- 200 in Patients with Relapsed/Refractory Acute Myeloid Leukemia (AML), or with Relapsed/refractory, High-risk Myelodysplastic Syndrome (MDS)
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

90 Participants Needed

This trial is testing the safety and effectiveness of using specially prepared donor cells for patients with blood cancers. These patients are receiving a strong type of bone marrow transplant. The goal is to replace their damaged bone marrow with healthy cells from a donor to help them recover. Bone marrow transplantation (BMT) is a powerful strategy for the treatment of leukemia, aplastic anemia, congenital immunodeficiency, and autoimmune diseases.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1
Age:18 - 65

186 Participants Needed

The primary objective of this study is to demonstrate the efficacy of Iomab-B, in conjunction with a Reduced Intensity Conditioning (RIC) regimen and protocol-specified allogeneic hematopoietic stem cell transplant (HCT), versus Conventional Care in patients with Active, Relapsed or Refractory Acute Myeloid Leukemia (AML).
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:55+

153 Participants Needed

This trial tests bosutinib, a daily oral medication, in children with a type of leukemia. It aims to find a safe dose and see how well it works in those newly diagnosed or who haven't responded to other treatments. Bosutinib helps by blocking proteins that cancer cells need to grow. Bosutinib is a type of medication used for treating leukemia, especially in cases not responding to other treatments.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2
Age:1 - 17

60 Participants Needed

Iadademstat is being studied as a treatment for subjects with Relapsed or Refractory Acute Myeloid Leukemia (R/R AML) with FMS-like tyrosine kinase mutation (FLT3 mut+). During the trial, iadademstat will be given in combination with gilteritinib, a drug that is already approved to treat patients with FLT3-mutated R/R AML.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

50 Participants Needed

Why Other Patients Applied

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78
Tagraxofusp is a protein-drug conjugate consisting of a diphtheria toxin redirected to target CD123 has been approved for treatment in pediatric and adult patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN). This trial aims to examine the safety of this novel agent in pediatric patients with relapsed/refractory hematologic malignancies. The mechanism by which tagraxofusp kills cells is distinct from that of conventional chemotherapy. Tagraxofusp directly targets CD123 that is present on tumor cells, but is expressed at lower or levels or absent on normal hematopoietic stem cells. Tagraxofusp also utilizes a payload that is not cell cycle dependent, making it effective against both highly proliferative tumor cells and also quiescent tumor cells. The rationale for clinical development of tagraxofusp for pediatric patients with hematologic malignancies is based on the ubiquitous and high expression of CD123 on many of these diseases, as well as the highly potent preclinical activity and robust clinical responsiveness in adults observed to date. This trial includes two parts: a monotherapy phase and a combination chemotherapy phase. This design will provide further monotherapy safety data and confirm the FDA approved pediatric dose, as well as provide safety data when combined with chemotherapy. The goal of this study is to improve survival rates in children and young adults with relapsed hematological malignancies, determine the recommended phase 2 dose (RP2D) of tagraxofusp given alone and in combination with chemotherapy, as well as to describe the toxicities, pharmacokinetics, and pharmacodynamic properties of tagraxofusp in pediatric patients. About 54 children and young adults will participate in this study. Patients with Down syndrome will be included in part 1 of the study.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1
Age:1 - 21

54 Participants Needed

A Phase 1, Multicenter, Open-label, Dose-escalation Study to Evaluate Safety, Tolerability, Pharmacokinetics, and Clinical Activity of Orally Administered LP-108 as Monotherapy and in Combination with Azacitidine in Subjects with Relapsed or Refractory Myelodysplastic Syndromes (MDS), Chronic Myelomonocytic Leukemia (CMML), or Acute Myeloid Leukemia (AML)
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting

36 Participants Needed

The main purpose of this study is to identify a safe and potentially effective dose of tuspetinib to be used in future studies in study participants diagnosed with acute myeloid leukemia (AML), myelodysplastic syndromes with increased blasts grade 2 (MDS-IB2), or chronic myelomonocytic leukemia (CMML) that is relapsed or refractory after at least one line of prior therapy, or in study participants with newly diagnosed AML. Tuspetinib will be administered as a single agent or in combination with other drugs (venetoclax or venetoclax plus azacitidine), as specified for each part of the study.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2

240 Participants Needed

This trial tests a new pill form of two drugs, cedazuridine and azacitidine, for patients needing azacitidine treatment. The goal is to see if the pill is as effective as the injection. Cedazuridine helps azacitidine work better by preventing its breakdown, and azacitidine stops cancer cells from growing.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2, 3

235 Participants Needed

This phase II trial studies how well sapanisertib works in treating patients with acute lymphoblastic leukemia that has returned after a period of improvement (relapsed) or has not responded to previous treatment (refractory). Sapanisertib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting

16 Participants Needed

This phase II trial tests the safety and best dose of revumenib in combination with chemotherapy, and evaluates whether this treatment improves the outcome in infants and young children who have leukemia that has come back (relapsed) or does not respond to treatment (refractory) and is associated with a KMT2A (MLL) gene rearrangement (KMT2A-R). Leukemia is a cancer of the white blood cells, where too many underdeveloped (abnormal) white blood cells, called "blasts", are found in the bone marrow, which is the soft, spongy center of the bones that produces the three major blood cells: white blood cells to fight infection; red blood cells that carry oxygen; and platelets that help blood clot and stop bleeding. The blasts crowd out the normal blood cells in the bone marrow and spread to the blood. They can also spread to the brain, spinal cord, and/or other organs of the body. The leukemia cells of some children have a genetic change in which a gene (KMT2A) is broken and combined with other genes that typically do not interact with one another; this is called "rearranged". This genetic rearrangement alters how other genes are turned on or off in the cell, turning on genes that drive the development of leukemia. Patients with KMT2A rearrangement have higher risk for cancer coming back after treatment. Revumenib is an oral medicine that directly targets the changes that occur in a cell with a KMT2A rearrangement and has been shown to specifically kill these leukemia cells in preclinical laboratory settings and in animals. Drugs used in chemotherapy, such as vincristine, prednisone, asparaginase, fludarabine and cytarabine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial is being done to find out if the combination of revumenib and chemotherapy would be safe and/or effective in treating infants and young children with relapsed or refractory KMT2A-R leukemia.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:1 - 6

78 Participants Needed

The purpose of this study is to test the safety of an investigational drug called CFI-400945 alone and in combination with azacitidine.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2

72 Participants Needed

LP-118 for Leukemia

Columbus, Ohio
This trial tests a new oral drug, LP-118, taken regularly in adults with blood cancers that have returned or resisted other treatments. It aims to find the safest and most effective dose and see if it helps control the cancer.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1
Age:13+

100 Participants Needed

This trial is testing a new drug called JNJ-74856665, alone or with other drugs, in patients with specific blood cancers like AML, MDS, and CMML. The goal is to see if it can safely stop cancer cells from growing and make them die.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

153 Participants Needed

The goal of this clinical research study is to learn if giving romidepsin before and after a stem cell transplant in combination with fludarabine and busulfan can help to control leukemia or lymphoma. Researchers also want to learn the highest tolerable dose of romidepsin that can be given with this combination. The safety of this combination and the safety of giving romidepsin after a stem cell transplant will also be studied. This is an investigational study. Romidepsin is FDA approved and commercially available for the treatment of CTCL in patients who have received at least 1 systemic (affecting the whole body) therapy before. Busulfan and fludarabine are FDA approved and commercially available for use with a stem cell transplant. The use of the combination of romidepsin, busulfan, and fludarabine to treat the type of leukemia or lymphoma you have is considered investigational. Up to 30 participants will be enrolled in this study. All will take part at MD Anderson.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

23 Participants Needed

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Myeloid Leukemia clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Myeloid Leukemia clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Myeloid Leukemia trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Myeloid Leukemia is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Myeloid Leukemia medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Myeloid Leukemia clinical trials?

Most recently, we added Ziftomenib for Acute Myeloid Leukemia, AUTX-703 for Acute Myeloid Leukemia and Myelodysplastic Syndrome and Eganelisib + Cytarabine for AML to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Terms of Service·Privacy Policy·Cookies·Security