Movement Disorders

Current Location

50 Movement Disorders Trials Near You

Power is an online platform that helps thousands of Movement Disorders patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
The purpose of this study is to investigate the brain activity associated with motor and non-motor symptoms of movement disorders, including Parkinson's disease (PD) and essential tremor. These movement disorders commonly have significant non-motor features, such as depression, cognitive and memory impairment, decreased attention, speech and language disturbances, and slower processing speeds. The investigators are interested in the brain activity associated with these motor and non-motor symptoms, and propose to investigate changes in brain activity while the investigators perform recordings of the surface and deep structures of the brain, in addition to the typical recordings the investigators perform, during routine deep brain stimulation (DBS) surgery.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

90 Participants Needed

This is a phase 2 study to assess the ability of adalimumab as compared to placebo to reduce or prevent progression of synuclein-related neurodegeneration in persons with idiopathic REM Sleep Behavior Disorder (RBD). The Primary Endpoint will be change from baseline in expression of the Parkinson Disease Related Pattern (PDRP) will be assessed using change in 18-flurodeoxyglucose (FDG) Positron Emission Tomography (PET) imaging.

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Phase 2
Age:50 - 80

108 Participants Needed

The investigators propose using DaTscan in patients with REM sleep behavior disorder (RBD), mild cognitive impairment (MCI), Parkinson's disease (PD), dementia with Lewy bodies (DLB), Alzheimer's disease (AD), and other neurodegenerative syndromes and disorders, to test several hypotheses - some confirmatory, and some novel. Such use will provide new data on the potential clinical and research utility of DaTscan in neurodegenerative diseases. The findings on DaTscan will be correlated with clinical diagnoses and other multimodal imaging studies (e.g., MRI, MRS, FDG-PET, and amyloid-PET) to enhance our understanding of neurodegenerative diseases.
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Phase 4
Age:40 - 90

500 Participants Needed

This trial uses a special radioactive drug and a heart scan to help identify Lewy Body Disease in people with certain neurological symptoms. The scan checks how well the heart absorbs the drug to find early signs of this brain disorder.
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Phase 4
Age:40 - 90

50 Participants Needed

The goal of this pilot randomized clinical trial is to learn if Neurobehavioral Therapy (NBT) works to treat motor functional neurological disorder (mFND) (also referred to as functional motor disorder). The main questions it aims to answer are: * Does NBT lower mFND symptoms? * Does NBT lower common co-occurring symptoms and improve functioning? Researchers will compare NBT to standard medical care (SMC). Participants will be randomized to receive either: * 12 weekly sessions of NBT, along with their SMC, * or continue receiving their SMC as provided by their treating clinicians. * all participants. regardless of group assignment, will complete a total of five in-clinic visits at the following time points: Baseline, 6 weeks, 12 weeks, 8 Months and 12 Months for self-report surveys to assess functional status, quality of life and mFND symptoms.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

40 Participants Needed

Safety and Efficacy of AAV9/AP4B1 For Patients with AP4B1-related Hereditary Spastic Paraplegia Type 47 (SPG47): A Phase 1/2 Single-Center, Open-Label Study of Stereotactic Intra-cisterna Magna Administration. The goal of this clinical trial is to evaluate whether a gene therapy can safely treat children with SPG47, a rare genetic condition that causes progressive spasticity and developmental delays. The main questions it aims to answer are: * Is the gene therapy safe and well tolerated? * Does the gene therapy improve motor function and developmental outcomes? Participants will: * Undergo screening assessments to confirm eligibility * Receive a single dose of the gene therapy vector * Attend follow-up visits for safety monitoring and developmental assessments over the course of five years
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Phase 1, 2
Age:12 - 60

5 Participants Needed

The goal of this clinical trial is to learn whether home-based transcranial direct current stimulation (tDCS) is safe and practical for people aged 40 to 70 years with Parkinson's Disease. The study aims to find out if participants can use the tDCS device at home without serious side effects and whether it is easy for them to use on their own. Participants will first attend an in-person visit to learn how to use the tDCS device. They will then use the device at home once a day for 20 minutes over seven consecutive days. Video calls on days 2 and 3 will provide support and supervision. After each session, participants will complete brief online questionnaires about any side effects and how easy the device was to use. The study will also check if using tDCS at home improves motor symptoms in Parkinson's Disease by using a standard movement assessment.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:40 - 70

6 Participants Needed

This clinical trial aims to evaluate the safety and efficacy of PROSOMNIA Sleep Therapy (PSTx) for individuals suffering from chronic insomnia, sleep deprivation, and REM sleep disorders. Chronic insomnia, characterized by difficulty falling or staying asleep, significantly affects patients and quality of life, mood, and cognitive function. REM sleep disorders, in which the body struggles to enter or maintain restful REM sleep, can worsen these issues. The trial introduces a novel therapy using anesthesia-induced sleep, targeting sleep homeostasis and improving sleep architecture. Objectives: The primary goals of the trial are to determine: 1. Whether PROSOMNIA Sleep Therapy increases the quality of REM sleep. 2. Whether PSTx increases the duration of REM and/or NREM sleep. 3. Whether PSTx decreases the time it takes participants to fall asleep (sleep onset latency). Participants will receive ONE (1) PROSOMNIA Sleep Therapy session lasting between 60-120 minutes. Each session uses Diprivan/Propofol to induce sleep, and is monitored via an EEG to ensure proper sleep stages, particularly REM sleep. Participant Criteria: Inclusion: Adults aged 18-65 with diagnosed or undiagnosed chronic insomnia or sleep deprivation. Exclusion: Patients with severe obesity, significant cardiovascular, neurological, or psychiatric conditions, or those with an ASA status above II. Study Design: This trial is non-randomized, single-arm and open-label, with all participants receiving the PSTx. The trial does not include a comparison group, as the focus is on evaluating the immediate, direct effects of the therapy. Participants will undergo continuous EEG monitoring during therapy sessions, allowing researchers to track brain activity and sleep stages in real-time. This method ensures that sleep cycles, particularly REM sleep, are optimized for therapeutic benefit. Therapy Methodology: PROSOMNIA Sleep Therapy leverages anesthesia to mimic natural sleep patterns and enhance the efficiency of REM sleep. Diprivan/Propofol is used to induce REM sleep, while EEG monitoring tracks and maintains proper sleep architecture throughout the session. The therapy promotes the clearance of adenosine, a compound that builds up during wakefulness and drives the need for sleep. Adenosine is cleared during REM sleep, reducing sleep pressure and improving cognitive function. Outcome Measures: Primary Outcomes: Researchers will measure the increase in REM sleep duration, improvement in sleep quality (via self-reported questionnaires), and a reduction in sleep onset latency. Secondary Outcomes: These include changes in mood, cognitive function, and blood serum uric acid levels. Patient-reported outcomes will also be tracked through tools like the PROSOMNIA Sleep Quiz, which is specifically designed for PSTx. Significance: Chronic insomnia and REM sleep disorders affect millions globally, leading to cognitive impairment, mood disturbances, and poor overall health. Traditional treatments, including pharmacological approaches and Cognitive Behavioral Therapy for Insomnia (CBT-I), often provide suboptimal results for many individuals. PSTx offers a novel, therapeutic approach to restoring sleep balance and enhancing the overall quality of sleep, particularly for those who have not responded to conventional treatments. Study Process: Recruitment and Baseline Assessments: Participants undergo a comprehensive sleep assessment, including sleep questionnaires and polysomnography, to establish a baseline for sleep quality and duration. Blood serum uric acid levels will also be measured to track any biochemical changes due to therapy. Therapy Sessions: Only one (1) PROSOMNIA Sleep Therapy session will be administered, with the session lasting between 60-120 minutes. Diprivan/Propofol is used to induce sleep, and EEG will monitor brain activity to ensure the proper balance of sleep stages. Post-Therapy Follow-up: Follow-up assessments will occur at 24 hours, 7 days, and 30 days post-treatment. Researchers will analyze the therapy effects on REM sleep, mood, cognitive function, and other health indicators. Potential Implications: If successful, this trial could revolutionize how we treat sleep disorders by targeting the underlying mechanisms of sleep pressure and REM sleep disruption. PROSOMNIA Sleep Therapy may offer a safe, effective, and immediate alternative for patients who have exhausted other treatment options. Key Concepts: Homeostatic sleep drive, (Process S), caused by adenosine buildup during wakefulness, is disrupted by chronic insomnia. This impacts cognitive function health and recovery. Anesthesia-induced REM sleep via PSTx helps regulate this homeostatic sleep stage, offering deeper and more restorative sleep compared to other sleep therapies. The study uses statistical methods like ANOVA and Chi-square to measure outcomes.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Phase 1
Age:18 - 65

100 Participants Needed

Injuries affecting the central nervous system may disrupt the cortical pathways to muscles causing loss of motor control. Nevertheless, the brain still exhibits sensorimotor rhythms (SMRs) during movement intents or motor imagery (MI), which is the mental rehearsal of the kinesthetics of a movement without actually performing it. Brain-computer interfaces (BCIs) can decode SMRs to control assistive devices and promote functional recovery. Despite rapid advancements in non-invasive BCI systems based on EEG, two persistent challenges remain: First, the instability of SMR patterns due to the non-stationarity of neural signals, which may significantly degrade BCI performance over days and hamper the effectiveness of BCI-based rehabilitation. Second, differentiating MI patterns corresponding to fine hand movements of the same limb is still difficult due to the low spatial resolution of EEG. To address the first challenge, subjects usually learn to elicit reliable SMR and improve BCI control through longitudinal training, so a fundamental question is how to accelerate subject training building upon the SMR neurophysiology. In this study, the investigators hypothesize that conditioning the brain with transcutaneous electrical spinal stimulation, which reportedly induces cortical inhibition, would constrain the neural dynamics and promote focal and strong SMR modulations in subsequent MI-based BCI training sessions - leading to accelerated BCI training. To address the second challenge, the investigators hypothesize that neuromuscular electrical stimulation (NMES) applied contingent to the voluntary activation of the primary motor cortex through MI can help differentiate patterns of activity associated with different hand movements of the same limb by consistently recruiting the separate neural pathways associated with each of the movements within a closed-loop BCI setup. The investigators study the neuroplastic changes associated with training with the two stimulation modalities.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

100 Participants Needed

The goal of this study is to investigate the finding that there are large individual differences in how participants move their eyes during active visual search. For example, some individuals tend to fixate, that is point their eyes steadily at a single location, for longer than other individuals before moving to another location. This experiment will use behavioral tasks to measure an individual's attentional and inhibitory functioning, and then see how each of these contributes to between-participant variability in eye movement behavior during visual search.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased
Age:18 - 65

75 Participants Needed

To evaluate the safety and efficacy of transplantation of human induced pluripotent stem cell-derived dopaminergic progenitors, CT1-DAP001, into the corpus striatum in patients with Parkinson's disease
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1
Age:40 - 75

7 Participants Needed

Carvedilol for Parkinson's Disease

Los Angeles, California
The purpose of this study is to investigate the long-term effects of treatment with the adrenergic blocker carvedilol on serial DaTscan, a dopamine transporter (DAT) single photon emission computerized tomography (SPECT) imaging technique in a population of subjects with defined pre-motor Parkinson's disease risks (i.e., REM sleep Behavior Disorder (RBD) and at least one among hyposmia, constipation, depression and color vision abnormality) and abnormal 123I-Metaiodobenzylguanidine (MIBG) scintigraphy.
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Phase 2

15 Participants Needed

This trial is testing terazosin, a medication that helps relax muscles and improve blood flow, on people with early signs of Parkinson's disease risks. The goal is to see if it can slow down or prevent the progression of the disease. Terazosin and similar drugs were recently found to enhance energy production and reduce Parkinson's disease progression in animal studies and human data.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:50 - 85

15 Participants Needed

Parkinson's disease (PD) is characterized by many non-motor symptoms that occur several years before the diagnosis, in particular idiopathic REM behavior disorder (iRBD), which is associated with autonomic impairment. The purpose of this study is to investigate the effect of treatment with the selective post-synaptic a1-adrenergic blocker terazosin on 123I-MIBG myocardial uptake in a population of subjects with defined pre-motor PD risks (i.e. hyposmia and RBD) and abnormal baseline 123I-MIBG uptake, with or without 123I-Ioflupane uptake abnormality or PD motor symptoms. Scintigraphic changes will be correlated to motor and non-motor severity of PD, measured by validated clinical scales and cardiac autonomic function tests.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:50 - 85

15 Participants Needed

REM Behavior Sleep Disorder (RBD) is a sleep disorder causing people to 'act out' their dreams. A high percentage of individuals with idiopathic RBD (iRBD) are known to develop conditions affecting the neurons in the brain such as Parkinson's disease (PD). Based on the increased risk to develop PD, individuals with iRBD are currently considered ideal candidates for therapies that can possibly protects brain cells, due to the critical window of opportunity to intervene early before brain cell loss progresses significantly. Early changes of PD are associated with a number of symptoms including loss of smell, constipation, anxiety and depression. In addition, early heart and brain abnormalities can be visualized using specialized imaging techniques called 123I-MIBG myocardial scintigraphy (MIBG) and dopamine transporter (DAT) single photon emission computerized tomography (SPECT) respectively. The combined presence of certain symptoms and the use of these imaging techniques are considered early markers of PD in individuals with iRBD. In other conditions, like heart failure, MIBG abnormalities are reversed by drugs able to block excessive adrenergic stimulation, known as beta-blockers. In this study the investigators want to learn about the effect of treatment with the beta-blocker carvedilol on MIBG abnormalities found in iRBD patients at risk to develop PD. The investigators believe that reversing the MIBG abnormality might prelude to a slowing of the neurodegenerative process. This drug is approved by the U.S. Food and Drug Administration (FDA) for congestive heart failure, hypertension and left ventricular dysfunction after myocardial infarction. However, carvedilol is not approved by the FDA in patients with iRBD at risk for PD. The available doses for this drug oral formulations are 3.125mg, 6.25mg, 12.5mg and 25mg. Changes visualized with the MIBG imaging technique will be correlated to the presence and severity of neurological (i.e. tremors, stiffness, slow movements, walking difficulties) and other symptoms associated with PD (i.e. abnormal smell, constipation, depression, color vision abnormalities), as measured by specific clinical scales and exams.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:50 - 85

15 Participants Needed

The purpose of this study is to understand variation in the symptoms of Parkinson disease. This study uses an iPhone app to record these symptoms through questionnaires and sensors.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

20000 Participants Needed

MST for Parkinson's Disease

Vancouver, British Columbia
This trial tests Magnetic Seizure Therapy (MST) for treating depression in patients with Parkinson's Disease. MST uses magnetic pulses to induce controlled seizures, which can help improve mood. The trial aims to see if MST is feasible and safe for these patients. MST is a new treatment that uses magnetic fields to induce therapeutic seizures and has shown promise as an alternative to electroconvulsive therapy (ECT) with potentially fewer cognitive side effects.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Age:50+

20 Participants Needed

The purpose of this study is to test the safety of placing Deep Brain Stimulators (DBS) in a part of the brain called the cerebellum and using electrical stimulation of that part of the brain to treat movement symptoms related to cerebral palsy. Ten children and young adults with dyskinetic cerebral palsy will be implanted with a Medtronic Percept Primary Cell Neurostimulator. We will pilot videotaped automated movement recognition techniques and formal gait analysis, as well as collect and characterize each subject's physiological and neuroimaging markers that may predict hyperkinetic pathological states and their response to therapeutic DBS.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:7 - 25

10 Participants Needed

The purpose of this study is to understand whether people with Parkinson's Disease and depression have improvement in their symptoms after psilocybin therapy.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:40 - 80

60 Participants Needed

Approximately 40,000 older Veterans who have complex care needs (for example, a combination of severe cognitive, physical, and mental health conditions) receive long-term care in VA Community Living Centers (CLCs). However, CLC staff members rarely receive specialized training in how to best engage and interact with these Veterans, which can lead to poor care quality, worsening of symptoms, staff burnout, and low morale throughout a facility. We have developed a unique, mind-body, group movement program for Veterans with cognitive impairment called Preventing Loss of Independence through Exercise (PLIÉ) and found that it has physical, cognitive, social and emotional benefits in CLC residents. We recently taught 50 staff members from a variety of professions in 5 CLCs to lead PLIÉ classes. The study will enable us to test whether the PLIÉ,LC staff training program improves outcomes for residents and to learn about the success and sustainment of the training.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased

288 Participants Needed

Why Other Patients Applied

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Movement Disorders clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Movement Disorders clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Movement Disorders trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Movement Disorders is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Movement Disorders medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Movement Disorders clinical trials?

Most recently, we added PROSOMNIA Sleep Therapy for Chronic Insomnia, Adalimumab for REM Sleep Behavior Disorder and Gene Therapy for Spastic Paraplegia to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security