Eye Health

Current Location

6 Eye Health Trials Near You

Power is an online platform that helps thousands of Eye Health patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
The primary study outcomes are to investigate the effects of 4-month daily carotenoid complex supplementation on carotenoid status in the macula and skin and visual fatigue among adults 20-45 years of age. Secondary outcomes will examine the supplementation effects on cognitive function.

Trial Details

Trial Status:Active Not Recruiting
Age:20 - 45

40 Participants Needed

Objective The current proposal investigates behavioral, psychophysiological, and social processes that may help explain biases and disparate outcomes in pain. Health disparities, or health outcomes that adversely affect disadvantaged populations, are pervasive and apparent in many diseases and symptoms, including pain. Pain is the number one reason individuals seek medical treatment. Health disparities in pain encompass both differences in pain experience and treatment for pain. For instance, research indicates that Black individuals report increased pain and have reduced pain tolerance relative to White individuals, yet doctors are less likely to treat minority patients pain and underestimate their pain experience. This project aims to address this systemic discrepancy by focusing on interpersonal processes that may contribute to these disparities, including socially-relevant responses to pain (i.e. pain expression) and pain assessment (e.g. visual attention). The proposed research aims to determine whether the study of pain expressions and their assessment can yield insights on how social factors shape pain and its treatment. Further, we test the efficacy of potential interventions designed to improve accuracy and reduce biases in pain assessment. If successful, this work will form the foundation of a new research program that will link the field of pain research with the field of social neuroscience, and forge new insights on the critical problem of health disparities in pain. Study population We will accrue up to 700 total healthy volunteers to target 240 completers Design Our overall aim is to understand how social factors influence the assessment and management of pain, and to gain insight into psychosocial processes that may underlie health disparities in pain. We propose a series of studies designed to test these links. First, we will measure pain perception and physiological responses to painful stimuli in a diverse group of individuals to test for sociocultural and biological influences on pain and pain-related responses. In subsequent studies, new participants ("perceivers") will view images of these initial participants ("targets") and will provide estimates of 'targets' pain experience. We will measure a) whether perceivers can accurately estimate 'targets' pain experience; b) whether accuracy differs as a function of similarity between target and perceiver (ingroup vs outgroup); and c) whether individuals can improve accuracy through feedback. Outcome measures Primary outcome measures for all experiments will be decisions about pain (experienced by self or other) measured with visual analogue scales, reaction time, and/or categorical judgments (pain/no pain). We will also measure physiological responses (e.g., facial muscle response, skin conductance, pupil dilation) and brain responses using functional magnetic resonance imaging (fMRI) as secondary outcome measures. We will test whether pain and pain-related responses varies as a function of sociocultural/demographic factors (e.g. race, ethnicity, sex) and whether accuracy in assessing others' pain is influenced by group similarity (i.e. ingroup vs. outgroup) and training (e.g. performance-related feedback)....
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:18 - 60

700 Participants Needed

Individuals living in Upper Manhattan have limited access to eye care, high vision impairment rates, and poor ocular health outcomes. To improve eye care and vision health outcomes, the Eye Health Intervention Study in Upper Manhattan (EYES-UM) will conduct eye health screenings in accessible primary care health centers and senior centers and implement a behavioral intervention to improve adherence for those referred for in-office eye care. The proposed innovative, 2:1 cluster-randomized clinical trial, will recruit adults age 40 and older in Upper Manhattan with known rates of inadequate eye care. A total of 10 settings in Upper Manhattan, comprised of primary care offices, senior centers, and organizations, confirms access to 17,000 individuals living at or below the NYC.gov poverty measure. This study will conduct ocular tests (visual acuity, intraocular pressure, fundus images) during screenings. To ensure that all participants receive the basic level of service, all participants who fail the eye health screening will be seen the same day by a study optometrist and eyeglasses will be provided at no charge. Educational workshops and an Advisory Board will support recruitment. Intervention Arm participants will receive ongoing support with scheduling eye exams and transportation by trained Study Coordinators. All participants will be followed prospectively for 2 years. The study is guided by the Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) Framework. Conducting Focus Groups with health policy stakeholders ensures iterative input during the study to bridge and translate EYES-UM findings into a Vision Health Policy Roadmap for scalable implementation of vision care delivery models, focusing on adherence.

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased
Age:40+

5840 Participants Needed

MAIA Microperimeter for Healthy Eyes

Fort Lauderdale, Florida
The purpose of this pre-market, multicentric cross-sectional study is to create a mesopic Normative Database for a new version of the MAIA device. Moreover, the study aims to evaluate MAIA safety and adverse events. These purposes will be achieved by collecting data of healthy subjects, who will undergo microperimetric examinations with the MAIA device during one single visit.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

380 Participants Needed

This clinical trial aims to evaluate the safety and efficacy of PROSOMNIA Sleep Therapy (PSTx) for individuals suffering from chronic insomnia, sleep deprivation, and REM sleep disorders. Chronic insomnia, characterized by difficulty falling or staying asleep, significantly affects patients and quality of life, mood, and cognitive function. REM sleep disorders, in which the body struggles to enter or maintain restful REM sleep, can worsen these issues. The trial introduces a novel therapy using anesthesia-induced sleep, targeting sleep homeostasis and improving sleep architecture. Objectives: The primary goals of the trial are to determine: 1. Whether PROSOMNIA Sleep Therapy increases the quality of REM sleep. 2. Whether PSTx increases the duration of REM and/or NREM sleep. 3. Whether PSTx decreases the time it takes participants to fall asleep (sleep onset latency). Participants will receive ONE (1) PROSOMNIA Sleep Therapy session lasting between 60-120 minutes. Each session uses Diprivan/Propofol to induce sleep, and is monitored via an EEG to ensure proper sleep stages, particularly REM sleep. Participant Criteria: Inclusion: Adults aged 18-65 with diagnosed or undiagnosed chronic insomnia or sleep deprivation. Exclusion: Patients with severe obesity, significant cardiovascular, neurological, or psychiatric conditions, or those with an ASA status above II. Study Design: This trial is non-randomized, single-arm and open-label, with all participants receiving the PSTx. The trial does not include a comparison group, as the focus is on evaluating the immediate, direct effects of the therapy. Participants will undergo continuous EEG monitoring during therapy sessions, allowing researchers to track brain activity and sleep stages in real-time. This method ensures that sleep cycles, particularly REM sleep, are optimized for therapeutic benefit. Therapy Methodology: PROSOMNIA Sleep Therapy leverages anesthesia to mimic natural sleep patterns and enhance the efficiency of REM sleep. Diprivan/Propofol is used to induce REM sleep, while EEG monitoring tracks and maintains proper sleep architecture throughout the session. The therapy promotes the clearance of adenosine, a compound that builds up during wakefulness and drives the need for sleep. Adenosine is cleared during REM sleep, reducing sleep pressure and improving cognitive function. Outcome Measures: Primary Outcomes: Researchers will measure the increase in REM sleep duration, improvement in sleep quality (via self-reported questionnaires), and a reduction in sleep onset latency. Secondary Outcomes: These include changes in mood, cognitive function, and blood serum uric acid levels. Patient-reported outcomes will also be tracked through tools like the PROSOMNIA Sleep Quiz, which is specifically designed for PSTx. Significance: Chronic insomnia and REM sleep disorders affect millions globally, leading to cognitive impairment, mood disturbances, and poor overall health. Traditional treatments, including pharmacological approaches and Cognitive Behavioral Therapy for Insomnia (CBT-I), often provide suboptimal results for many individuals. PSTx offers a novel, therapeutic approach to restoring sleep balance and enhancing the overall quality of sleep, particularly for those who have not responded to conventional treatments. Study Process: Recruitment and Baseline Assessments: Participants undergo a comprehensive sleep assessment, including sleep questionnaires and polysomnography, to establish a baseline for sleep quality and duration. Blood serum uric acid levels will also be measured to track any biochemical changes due to therapy. Therapy Sessions: Only one (1) PROSOMNIA Sleep Therapy session will be administered, with the session lasting between 60-120 minutes. Diprivan/Propofol is used to induce sleep, and EEG will monitor brain activity to ensure the proper balance of sleep stages. Post-Therapy Follow-up: Follow-up assessments will occur at 24 hours, 7 days, and 30 days post-treatment. Researchers will analyze the therapy effects on REM sleep, mood, cognitive function, and other health indicators. Potential Implications: If successful, this trial could revolutionize how we treat sleep disorders by targeting the underlying mechanisms of sleep pressure and REM sleep disruption. PROSOMNIA Sleep Therapy may offer a safe, effective, and immediate alternative for patients who have exhausted other treatment options. Key Concepts: Homeostatic sleep drive, (Process S), caused by adenosine buildup during wakefulness, is disrupted by chronic insomnia. This impacts cognitive function health and recovery. Anesthesia-induced REM sleep via PSTx helps regulate this homeostatic sleep stage, offering deeper and more restorative sleep compared to other sleep therapies. The study uses statistical methods like ANOVA and Chi-square to measure outcomes.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Phase 1
Age:18 - 65

100 Participants Needed

The goal of this project is to conduct a clinical trial in 60 participants ranging from age 65-95 who are at risk for age-related macular degeneration (AMD). The study will evaluate the effects of 14g of goji berry intake or an equivalent amount and type of fiber, five days a week for six months, on visual health, gut microbiome profiles, skin carotenoid measures, and lipoprotein profiles.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:65 - 95

60 Participants Needed

Why Other Patients Applied

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Eye Health clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Eye Health clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Eye Health trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Eye Health is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Eye Health medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Eye Health clinical trials?

Most recently, we added System-Level Intervention for Visual Impairment, PROSOMNIA Sleep Therapy for Chronic Insomnia and MAIA Microperimeter for Healthy Eyes to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security