Brain Stem Stroke

Current Location

9 Brain Stem Stroke Trials Near You

Power is an online platform that helps thousands of Brain Stem Stroke patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
The purpose of this research study is to demonstrate the safety and efficacy of using two CRS Arrays (microelectrodes) for long-term recording of brain motor cortex activity and microstimulation of brain sensory cortex.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:22 - 70

30 Participants Needed

The Synchron motor neuroprosthesis (MNP) is intended to be used in subjects with severe motor impairment, unresponsive to medical or rehabilitative therapy and a persistent functioning motor cortex. The purpose of this research is to evaluate safety and feasibility. The MNP is a type of implantable brain computer interface which bypasses dysfunctional motor neurons. The device is designed to restore the transmission of neural signal from the cerebral cortex utilized for neuromuscular control of digital devices, resulting in a successful execution of non-mechanical digital commands.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased
Age:21 - 75

6 Participants Needed

The CortiCom system consists of 510(k)-cleared components: platinum PMT subdural cortical electrode grids, a Blackrock Microsystems patient pedestal, and an external NeuroPort Neural Signal Processor. Up to two grids will be implanted in the brain, for a total channel count of up to 128 channels, for six months. In each participant, the grid(s) will be implanted over areas of cortex that encode speech and upper extremity movement.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:22 - 70

3 Participants Needed

This study is evaluating whether people with tetraplegia may be able to control a computer cursor and other assistive devices with their thoughts.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

27 Participants Needed

VA research has been advancing a high-performance brain-computer interface (BCI) to improve independence for Veterans and others living with tetraplegia or the inability to speak resulting from amyotrophic lateral sclerosis, spinal cord injury or stoke. In this project, the investigators enhance deep learning neural network decoders and multi-state gesture decoding for increased accuracy and reliability and deploy them on a battery-powered mobile BCI device for independent use of computers and touch-enabled mobile devices at home. The accuracy and usability of the mobile iBCI will be evaluated with participants already enrolled separately in the investigational clinical trial of the BrainGate neural interface.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased

2 Participants Needed

The purpose of this study is to obtain preliminary device safety information and demonstrate proof of principle (feasibility) of the ability of people with tetraplegia to control a computer cursor and other assistive devices with their thoughts.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

2 Participants Needed

People with brainstem stroke, advanced amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease), or other disorders can become unable to move or speak despite being awake and alert. In this project, the investigators seek to further translate knowledge about interpreting brain signals related to movement, and to further develop an intracortical brain-computer interface (iBCI) that could restore rapid and intuitive use of communication apps on tablet computers by people with paralysis.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

2 Participants Needed

BCI-FIT for ALS

Portland, Oregon
This project adds to non-invasive BCIs for communication for adults with severe speech and physical impairments due to neurodegenerative diseases. Researchers will optimize \& adapt BCI signal acquisition, signal processing, natural language processing, \& clinical implementation. BCI-FIT relies on active inference and transfer learning to customize a completely adaptive intent estimation classifier to each user's multi-modality signals simultaneously. 3 specific aims are: 1. develop \& evaluate methods for on-line \& robust adaptation of multi-modal signal models to infer user intent; 2. develop \& evaluate methods for efficient user intent inference through active querying, and 3. integrate partner \& environment-supported language interaction \& letter/word supplementation as input modality. The same 4 dependent variables are measured in each SA: typing speed, typing accuracy, information transfer rate (ITR), \& user experience (UX) feedback. Four alternating-treatments single case experimental research designs will test hypotheses about optimizing user performance and technology performance for each aim.Tasks include copy-spelling with BCI-FIT to explore the effects of multi-modal access method configurations (SA1.3a), adaptive signal modeling (SA1.3b), \& active querying (SA2.2), and story retell to examine the effects of language model enhancements. Five people with SSPI will be recruited for each study. Control participants will be recruited for experiments in SA2.2 and SA3.4. Study hypotheses are: (SA1.3a) A customized BCI-FIT configuration based on multi-modal input will improve typing accuracy on a copy-spelling task compared to the standard P300 matrix speller. (SA1.3b) Adaptive signal modeling will allow people with SSPI to typing accurately during a copy-spelling task with BCI-FIT without training a new model before each use. (SA2.2) Either of two methods of adaptive querying will improve BCI-FIT typing accuracy for users with mediocre AUC scores. (SA3.4) Language model enhancements, including a combination of partner and environmental input and word completion during typing, will improve typing performance with BCI-FIT, as measured by ITR during a story-retell task. Optimized recommendations for a multi-modal BCI for each end user will be established, based on an innovative combination of clinical expertise, user feedback, customized multi-modal sensor fusion, and reinforcement learning.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

60 Participants Needed

The goal of this study is to improve our understanding of speech production, and to translate this into medical devices called intracortical brain-computer interfaces (iBCIs) that will enable people who have lost the ability to speak fluently to communicate via a computer just by trying to speak.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

2 Participants Needed

Why Other Patients Applied

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Brain Stem Stroke clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Brain Stem Stroke clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Brain Stem Stroke trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Brain Stem Stroke is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Brain Stem Stroke medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Brain Stem Stroke clinical trials?

Most recently, we added Brain-Computer Interface for Paralysis, BrainGate Neural Interface for Tetraplegia and BrainGate2 System for Quadriplegia to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security