Type Condition

Current Location

2 Brisk Walking Trials Near You

Power is an online platform that helps thousands of patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
Above-normal systolic blood pressure (SBP), defined as SBP \>/= 120 mmHg, is the major modifiable risk factor for cardiovascular disease, stroke, cognitive decline/dementia, and other chronic health problems. Despite the availability of treatments to lower SBP, over 75 percent of adults with above-normal SBP fail to control BP, which has led to a nearly 50 percent increase in the number of deaths attributable to BP over the past decade. Therefore, above-normal SBP is a major public health burden. * Greater than 65 percent of adults 50 years of age and older have above-normal SBP. The number of adults age 50 years and older is rapidly increasing, predicting a continued increase in above-normal SBP driven morbidity and mortality in the absence of effective treatment strategies. This makes developing novel SBP-lowering therapies an urgent biomedical research priority. * Increasing SBP is closely linked to vascular dysfunction, observable as impaired endothelial function, increased large-elastic artery stiffness, and impaired cerebrovascular function. Declines in these functions play a large role in the increased risk of chronic disease associated with above-normal SBP. The primary mechanism responsible for SBP-induced vascular dysfunction is thought to be oxidative stress-associated inhibition of nitric oxide bioavailability. Therefore, to have the largest biomedical impact, new SBP-lowering therapies should also improve vascular function by decreasing oxidative stress. * Healthy lifestyle practices, such as conventional aerobic exercise, maintaining a healthy diet, or reducing sodium intake, are all first-line strategies to lower SBP. Importantly, these lifestyle practices also improve vascular function, in large part by reducing oxidative stress. However, adherence to healthy lifestyle practices is poor, with adherence to guidelines generally between 20 to 40 percent in adult Americans. The greatest reported barrier to meeting healthy lifestyle guidelines is lack of time. Therefore, time-efficient interventions have great promise for promoting adherence, reducing SBP, and improving other physiological functions. * High-resistance inspiratory muscle strength training (IMST) is a time-efficient (5 minutes per session) lifestyle intervention consisting of 30 inspiratory maneuvers performed against a high resistance. Preliminary data suggest 6-weeks of IMST performed 6 days/week reduces SBP by 9 mmHg in adults with above-normal SBP (i.e., greater than 120 mmHg) at baseline. Importantly, this reduction in SBP is equal to or greater than the reduction in blood pressure typically achieved with time- and effort-intensive healthy lifestyle strategies like conventional aerobic exercise. However, these results need to be confirmed in an appropriately powered clinical trial with a longer, guideline-based treatment duration. Furthermore, the influence of IMST on functions impaired by above-normal SBP (endothelial, cerebrovascular, cognitive) needs to be determined, as do the mechanisms through which IMST exerts beneficial effects. * Accordingly, we will conduct a randomized, blinded, sham-controlled, parallel group design clinical trial to assess the efficacy of 3-months of IMST (75 percent maximal inspiratory pressure) vs. brisk walking (40-60% heart rate reserve; an established healthy lifestyle strategy) for lowering SBP and improving endothelial, cerebrovascular, and cognitive function in adults age 50 years and older with above-normal SBP. I hypothesize IMST will lower SBP and improve endothelial function by decreasing oxidative stress and increasing nitric oxide bioavailability. I also hypothesize IMST will improve cerebrovascular and cognitive function, and that these improvements will be related to reductions in SBP and improvements in endothelial function. I also expect adherence to the intervention to be excellent (over 80 percent of all training sessions completed at the appropriate intensity). * To test my hypothesis, I will recruit 102 adults age 50 years and older who have SBP \>/= 120 mmHg. Subjects will undergo baseline testing for casual (resting) SBP, 24-hour ambulatory SBP, endothelial function, arterial stiffness, cognitive function, and cerebrovascular function. Innovative mechanistic probes including pharmaco-dissection with vitamin C, analysis of biopsied endothelial cells, and high-throughput metabolomics, will be performed to assess oxidative stress and nitric oxide bioavailability at baseline. * After baseline testing, subjects will be randomized to perform either 3-months of high-resistance IMST or brisk walking. Subjects will train 6 days/week with one training session supervised in the laboratory and the other 5 performed unsupervised at home. Following 3 months of training, subjects will redo all the tests that were done during baseline testing to assess training-induced changes in SBP, physiological functions, and underlying mechanisms.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:50+

102 Participants Needed

High blood pressure is a leading risk factor for cardiovascular disease. Traditionally, one of the ways to treat or prevent high blood pressure is to prescribe aerobic exercise training (i.e. brisk walking). Stretching may also be effective because it may cause changes in blood vessel stiffness and therefore reduce resistance to blood flow. The study will assess a group of individuals (i.e. 96) participating in a supervised stretching or walking program five days per week for six months to determine whether stretching is superior for reducing blood pressure. This research will contribute to recommendations about the most effective exercise programs for reducing blood pressure and risk of cardiovascular disease.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

96 Participants Needed

Why Other Patients Applied

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do clinical trials pay?
Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.
How do clinical trials work?
After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length is 12 months.
How do I participate in a study as a "healthy volunteer"?
Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.
What does the "phase" of a clinical trial mean?
The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.
Do I need to be insured to participate in a medical study ?
Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.
What are the newest clinical trials ?
Most recently, we added Stretching vs Walking for High Blood Pressure and Inspiratory Muscle Strength Training for High Blood Pressure to the Power online platform.
Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security