Cardiovascular Injury

Current Location

11 Cardiovascular Injury Trials Near You

Power is an online platform that helps thousands of Cardiovascular Injury patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
Learning about the impact of anti-androgen treatment has on cardiac function in patients with prostate cancer may help plan treatment and help patients live more comfortably. This pilot clinical trial will utilize cardiac magnetic resonance imaging (MRI) before a patient starts hormone therapy and after 4 to 7 months of hormone therapy. The objective is to measure the impact of hormone therapy (anti-androgen treatment) on cardiac function in patients with prostate cancer.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased
Sex:Male

23 Participants Needed

The study aims to explore how cardiovascular function changes in the first year after a spinal cord injury, and to see how different treatments, like spinal stimulation through the skin (transcutaneous spinal stimulation), affect blood pressure. The main questions are: How does stimulation affect blood pressure over the year? What is the level of cardiovascular activation throughout the year? The study will start during the inpatient stay at the Kessler Institute for Rehabilitation and continue after discharge as an outpatient, totaling about 20-29 sessions over the year.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased

5 Participants Needed

Spinal cord injury (SCI) disrupts the nerves controlling movement, along with those that regulate functions like heart rate and blood pressure (known as the autonomic nervous system, or ANS). Testosterone (T) plays a significant role in brain health and ANS reflex function in non-neurologically impaired men. However, little is known about the relationships between T, nerve function, and ANS dysfunction after SCI. Interestingly, up to 60% of men with SCI exhibit persistently low T concentrations, which may worsen nerve and ANS dysfunction. In uninjured eugonadal people (normal physiologic range of serum T concentrations), a single pharmacologic dose of intranasal T has been shown to quickly improve nerve function, but no study has evaluated if T administration alters nerve and ANS function in men with SCI. Herein, the investigators will conduct the first study to test how a single dose of intranasal T impacts motor and ANS function in this population.

Trial Details

Trial Status:Recruiting
Trial Phase:Early Phase 1
Sex:Male

15 Participants Needed

The overall purpose of this protocol is to identify subacute sepsis-associated cardiac disease in pediatric patients with cancer by CMR and evaluate the CMR findings during their follow-up. This will help inform heart failure management decision making. Evidence of dysfunction or elevated T2 values may inform adjustment of afterload reduction and beta blocker administration, and elevated ECV findings will suggest the need for increased surveillance for diastolic dysfunction. Primary Objectives: (Feasibility Phase) To determine the feasibility of cardiac MRI without anesthesia in the immediate post-sepsis period in children with cancer. CMR scanning will be completed within 10 days of presentation - this will allow us to ensure that possible hemodynamic or respiratory instability and renal dysfunction has resolved prior to transport to the MRI scanner during the most acute phase of illness. (Completion Phase) To estimate the frequency of subacute sepsis-associated cardiac disease, including myocardial inflammation and dysfunction, in the post-acute phase (within 10 days of presentation) of severe sepsis in children with cancer
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:9 - 25

20 Participants Needed

Background: Cardiovascular and neurological conditions are major causes of disability worldwide. Early, intensive rehabilitation is essential but often challenging to access in current healthcare systems. In Canada, the direct and indirect costs of acquired brain injury (ABI) are substantial, emphasizing the need for improved rehabilitation services. In collaboration with four health regions and the Canadian Foundation of Innovation (CFI) funded BRILLIANT research group, we are implementing a digital health platform (the BRILLIANT platform), which includes five modules to address current gaps and support a person-centered integrated care continuum for cardiovascular and neurological conditions. In this stepped wedge randomized trial, we plan to implement and evaluate the use of the BRILLIANT Platform for improving transitions of care in the rehabilitation of ABI individuals in Quebec. Methods: A stepped wedge cluster randomized trial will be conducted across four healthcare regions with eight programs. Eligible participants included new cardiovascular and neurological patients, caregivers, clinicians, coordinators, and managers. The BRILLIANT platform intervention, implemented in 2 phases, will provide standardized assessments, communication tools, shared intervention plans, self-management support, and quality improvement dashboards. Outcomes will include rehabilitation intensity measured in minutes, time from admission to rehabilitation, health-related quality of life, care experience, and costs. Data analysis will use mixed-effects models for quantitative data and content analysis for qualitative data. Discussion: This study will provide valuable evidence on the effectiveness and feasibility of the BRILLIANT platform in improving rehabilitation care for patients with cardiovascular and neurological conditions in Quebec. We anticipate that by addressing the challenges and pursuing future directions, the implementation of this digital platform can contribute to improving patient outcomes and healthcare delivery.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased

962 Participants Needed

Cardiac complications, particularly myocardial injury after noncardiac surgery (MINS), significantly contribute to 30-day mortality, affecting about 1 in 10 patients after noncardiac surgery. Despite its prevalence and serious implications, there is no consensus on managing myocardial injury after noncardiac surgery in clinical practice. Interventions commonly used for cardiovascular prevention in patients who had a heart attack outside of a surgery context could also be beneficial in patient with MINS. This pilot study trial aims to gather feasibility data, such as recruitment rates and intervention adherence that will guide on the design and inform on sample size of a future study with large pragmatic randomized controlled trial on the impact of systematic referral for secondary cardiovascular prevention on outcomes in patients who had a MINS.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased

100 Participants Needed

The goal of this clinical trial is to test a gait (walking) training program in non-ambulatory (unable to walk) chronic stroke survivors. The main question it aims to answer is: • Will gait training improve the cardiovascular system in non-ambulatory chronic stroke survivors better than a sitting leg cycling exercise? Participants will walk on a treadmill with a partial body-weight support system and the gait training device. Researchers will compare with a leg-cycling exercise to see if there are significant differences in resting heart rate, systolic blood pressure (SBP), and A1c levels in the blood.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

72 Participants Needed

The central hypothesis of this research study is that perioperative administration of the proton pump inhibitor (PPI) pantoprazole could reduce the development of acute kidney injury (AKI) following cardiac surgery by activation molecular pathways for kidney protection. The investigators propose a single-center, randomized, controlled, single-blinded trial to determine whether perioperative intravenous administration of pantoprazole will reduce the incidence of AKI, some molecules that can be detected the urine, and major adverse kidney events (MAKE) at day 30 postoperatively, compared to famotidine after cardiac surgery. The specific aims of the study will be achieved by randomizing a group of 400 patients to receive pantoprazole (study) or famotidine (control) for 3 days perioperatively. Our study population will include any adult patients (aged over 18 years) scheduled for cardiac surgery requiring a cardiopulmonary bypass machine.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

400 Participants Needed

Spinal cord injury (SCI) can make it hard for the body to self-regulate some of its automatic functions like blood pressure, breathing, and heart rate. This can also make it hard for those living with SCI to exercise or complete their usual daily activities. The goal of this randomized trial is to test combinatory therapy of moderate arm-crank exercise paired with non-invasive transcutaneous spinal cord stimulation (tSCS) for cardiovascular recovery in adults aged 21-65 following chronic motor-complete spinal cord injury (SCI) at or above the thoracic sixth spinal segment (≥T6). The main questions the study aims to answer are: * Conduct tSCS mapping to determine the most effective location and stimulation intensity for BP control in individuals with motor-complete SCI ≥ T6. * Evaluate the effects 8 weeks of targeted tSCS paired with arm-crank exercise compared to sham stimulation with exercise on improving cardiovascular function in individuals with motor-complete SCI ≥T6. * Evaluate the dosage-response of 8 weeks vs. 16 weeks of targeted tSCS paired with arm-crank exercise on cardiovascular function in individuals with motor-complete SCI ≥T6. * Explore the mechanisms involved in cardiovascular recovery with long-term tSCS paired with arm-crank exercise. Participants will: * Receive either transcutaneous spinal cord stimulation or "sham" spinal cord stimulation while exercising on an arm-crank bicycle in the first 8 weeks. * Come in for approximately 60 visits over a 6-month period. This includes 2, 8-week periods where the investigators will ask participants to come in 3x per week for spinal cord stimulation and exercise. * During assessment visits the researchers will perform a variety of exams including a neurologic, cardiovascular, pulmonary, physical, and autonomic exam, and will ask questions about quality of life and functioning. Researchers will compare those who receive tSCS and do moderate arm-crank exercise to those who receive a sham stimulation and do moderate arm-crank exercise to see if tSCS is effective at improving cardiovascular and autonomic functioning in those with SCI.

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:21 - 65

16 Participants Needed

The aim of this study is to examine the mechanisms of transcutaneous spinal cord stimulation (tSCS) for improving cardiovascular and pulmonary function in individuals with chronic motor-complete spinal cord injury (SCI) by measuring vascular related endothelial biomarkers, plasma catecholamines, and respiratory parameters.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased
Age:19 - 65

22 Participants Needed

This study will provide nutrition counseling via FaceTime on an iPad to persons with traumatic spinal cord injury (SCI) who are overweight or obese and are at least one-year post-injury. Nutrition counseling may help participants to develop eating behaviors that match the participants' needs and help improve heart health. The purpose of this project is to decrease the risk of complications like obesity, high cholesterol, or diabetes, and explore associations between bowel and bladder function and nutrition. This study will require 3 in person visits that are about 3 months apart. The total length of the study is about 6 months and includes 3 months of telenutrition counseling.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:20+

96 Participants Needed

Why Other Patients Applied

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Cardiovascular Injury clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Cardiovascular Injury clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Cardiovascular Injury trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Cardiovascular Injury is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Cardiovascular Injury medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Cardiovascular Injury clinical trials?

Most recently, we added BRILLIANT Platform for Brain Injury, Spinal Stimulation for Cardiovascular Function After Spinal Cord Injury and Management for Heart Attack After Surgery to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Back to top
Terms of Service·Privacy Policy·Cookies·Security