Acute Lung Injury

Current Location

33 Acute Lung Injury Trials Near You

Power is an online platform that helps thousands of Acute Lung Injury patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
The goal of this interventional study is to compare standard mechanical ventilation to a lung-stress oriented ventilation strategy in patients with Acute Respiratory Distress Syndrome (ARDS). Participants will be ventilated according to one of two different strategies. The main question the study hopes to answer is whether the personalized ventilation strategy helps improve survival.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

1100 Participants Needed

Study objectives 1. To characterize the efficacy of reparixin in ameliorating lung injury and systemic inflammation and expediting clinical recovery and liberation from mechanical ventilation in adult patients with moderate to severe ARDS (PaO2/FIO2 ratio ≤ 200). 2. to assess the effect of reparixin on systemic biomarkers linked to a hyper-inflammatory ARDS phenotype. 3. To evaluate the safety of reparixin vs. placebo in patients enrolled in the study.

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

66 Participants Needed

AV-001 for COVID-19

Columbus, Ohio
This trial tests AV-001 Injection, a treatment to strengthen lung blood vessels and reduce inflammation, in hospitalized pneumonia patients needing extra oxygen. AV-001 works by mimicking a natural protein to make lung blood vessels stronger and less leaky.

Trial Details

Trial Status:Recruiting

120 Participants Needed

This trial tests a new treatment where tiny particles from bone marrow cells are used to help patients with severe lung problems by reducing inflammation and repairing lung damage.
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

970 Participants Needed

Severe pediatric acute respiratory distress syndrome (PARDS) is a life-threatening and frequent problem experienced by thousands of children each year. Little evidence supports current supportive practices during their critical illness. The overall objective of this study is to identify the best positional and/or ventilation practice that leads to improved patient outcomes in these critically ill children. We hypothesize that children with high moderate-severe PARDS treated with either prone positioning or high-frequency oscillatory ventilation (HFOV) will demonstrate more days off the ventilator when compared to children treated with supine positioning or conventional mechanical ventilation (CMV).
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Unphased
Age:2 - 20

600 Participants Needed

The purpose of this study is to see if taking the study drug, Belumosudil, for 52 weeks in addition to your usual care and medication, will prevent Chronic Lung Allograft Dysfunction (CLAD) in participants who have a lung biopsy that shows evidence of rejection or inflammation to the transplanted lung(s). For this study, biopsies that show evidence of Acute Rejection (AR), Lymphocytic Bronchiolitis (LB), Organizing Pneumonia (OP) or Acute Lung Injury (ALI) are referred to as "Qualifying Biopsies"; patients who had evidence of one or more of these conditions on a recent biopsy are eligible for enrollment in this study. Belumosudil is an investigational drug that blocks a molecule in the body that reduces inflammation and scarring and may play a role in the development and progression of CLAD. Belumosudil is a drug approved by the FDA to treat adults and children 12 years and older with chronic graft-versus-host disease (cGVHD), a condition with some similarities to CLAD. The primary objective it to determine the efficacy of treatment with Belumosudil + maintenance immunosuppression (IS) versus placebo + maintenance IS on preventing the subsequent development of probable or definite CLAD, lung retransplant, or death.
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Age:12+

234 Participants Needed

GEn-1124 for ARDS

Cleveland, Ohio
GEn1E-1124-002 is a two-part Phase 2 study to evaluate the safety and tolerability of GEn-1124 in subjects with ARDS. Treatment with IV infusion dosing as early as possible after ARDS diagnosis. Subjects will be given a second dose approximately 8 hours after the first dose and will continue with twice daily dosing (BID regimen) for 5 days.

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

52 Participants Needed

This trial is testing a device that stimulates a nerve in the neck, along with usual medical care, to help patients with mild-to-moderate brain injuries. The goal is to prevent serious complications like severe inflammation and breathing problems.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:12 - 80

46 Participants Needed

Previous clinical trials in adults with acute respiratory distress syndrome (ARDS) have demonstrated that ventilator management choices can improve Intensive Care Unit (ICU) mortality and shorten time on mechanical ventilation. This study seeks to scale an established Clinical Decision Support (CDS) tool to facilitate dissemination and implementation of evidence-based research in mechanical ventilation of infants and children with pediatric ARDS (PARDS). This will be accomplished by using CDS tools developed and deployed in Children's Hospital Los Angeles (CHLA) which are based on the best available pediatric evidence, and are currently being used in an NHLBI funded single center randomized controlled trial (NCT03266016, PI: Khemani). Without CDS, there is significant variability in ventilator management of PARDS patients both between and within Pediatric ICUs (PICUs), but clinicians are willing to accept CDS recommendations. The CDS tool will be deployed in multiple PICUs, targeting enrollment of up to 180 children with PARDS. Study hypotheses: 1. The CDS tool in will be implementable in nearly all participating sites 2. There will be \> 80% compliance with CDS recommendations and 3. The investigators can implement automatic data capture and entry in many of the ICUs Once feasibility of this CDS tool is demonstrated, a multi-center validation study will be designed, which seeks to determine whether the CDS can result in a significant reduction in length of mechanical ventilation (LMV).
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:1 - 18

180 Participants Needed

BTI-203 is a randomized, double-blind, placebo-controlled, multicenter, Phase 2 proof-of-concept (POC) study to evaluate the efficacy and safety of rhu-pGSN plus standard of care (SOC) in subjects with moderate-to-severe ARDS (P/F ratio ≤150) due to pneumonia or other infections. Potential subjects hospitalized with pneumonia or other infections are to be screened within 24 hours of diagnosis of ARDS.

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

600 Participants Needed

PNEUMA is a preliminary safety and feasibility trial of a novel approach to the titration of neuromuscular blockade (NMB) to safe spontaneous breathing in patients with severe acute respiratory distress syndrome (ARDS) supported with veno-venous extracorporeal membrane oxygenation (VV-ECMO).
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

23 Participants Needed

Ozone Exposure for Acute Lung Injury

Chapel Hill, North Carolina
Purpose: The primary purpose of this study is to measure pulmonary function, symptoms, and pulmonary inflammatory responses in healthy young adults during and immediately after exposure to a low concentration of ozone (0.070 ppm) or clean air for 6.6 hours while undergoing moderate intermittent exercise. This concentration is the current EPA NAAQS standard for ozone.
No Placebo Group

Trial Details

Trial Status:Recruiting
Age:18 - 35

60 Participants Needed

This is a Phase 2 multicenter, randomized, double-blinded, placebo-controlled study that will evaluate the safety and efficacy of host-directed therapeutics in hospitalized adults diagnosed with Acute Respiratory Distress Syndrome (ARDS) utilizing a platform trial design. Participants will be randomized to receive either a placebo or one of the active treatments. This record describes the default procedures and analyses for all cohorts. Each specific cohort may have additional eligibility requirements, safety and efficacy procedures, or endpoints, which will be described in the corresponding intervention-specific records on clinicaltrials.gov listed below in the detailed description.

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

600 Participants Needed

This is a Phase 2 multicenter, randomized, double-blinded, placebo-controlled study that will evaluate the safety and efficacy of host-directed therapeutics in hospitalized adults diagnosed with Acute Respiratory Distress Syndrome (ARDS) utilizing a platform trial design. Cohort B: Participants will be randomized to receive either a placebo or paridiprubart. This record describes the default procedures and analyses for Cohort B. Please see NCT06703073 for information on the BP-ARDS-P2-001 Master Protocol.

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

200 Participants Needed

This is a Phase 2 multicenter, randomized, double-blinded, placebo-controlled study that will evaluate the safety and efficacy of host-directed therapeutics in hospitalized adults diagnosed with Acute Respiratory Distress Syndrome (ARDS) utilizing a platform trial design. Cohort C: Participants will be randomized to receive either a placebo or bevacizumab. This record describes the default procedures and analyses for Cohort C. Please see NCT06703073 for information on the BP-ARDS-P2-001 Master Protocol.
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

200 Participants Needed

This study will be a multi-center, prospective, randomized, partially double-blind, placebo-controlled Phase II clinical trial of inhaled CO (iCO) for the treatment of ARDS. The trial will be conducted at 7 tertiary care medical centers including Weill Cornell Medicine/NewYork-Presbyterian Hospital, Brigham and Women's Hospital (BWH), Massachusetts General Hospital (MGH), Duke University Hospital, Durham Veterans Administration Medical Center, New York-Presbyterian Brooklyn Methodist Hospital, and Duke Regional Hospital. The purpose of this study is to evaluate the safety, tolerability, and efficacy of inhaled carbon monoxide (iCO) for the treatment of ARDS and to examine the biologic readouts of low dose iCO therapy in patients with ARDS

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

32 Participants Needed

Inhaled Carbon Monoxide for ARDS

Durham, North Carolina
This study is a multi-center, randomized, partially double-blind, and placebo-controlled Phase Ib clinical trial of inhaled CO (iCO) for the treatment of sepsis-induced acute respiratory distress syndrome (ARDS). The purpose of this study is to evaluate the safety and accuracy of a Coburn-Forster-Kane (CFK) equation-based personalized iCO dosing algorithm to achieve a target carboxyhemoglobin (COHb) level of 6-8% in patients with sepsis-induced ARDS. We will also examine the biologic readouts of low dose iCO therapy in patients with sepsis-induced ARDS.

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

5 Participants Needed

This trial tests a special Vest that helps COVID-19 patients with severe lung issues breathe better. The Vest inflates and deflates to improve oxygen levels in the blood. It aims to provide a safer and simpler alternative to turning patients onto their stomachs.
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Unphased

15 Participants Needed

The present study will utilize esophageal manometry to measure the presence and magnitude of persistent patient effort during lung protective ventilation, allowing identification and mitigation of occult lung stress.
No Placebo Group

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Unphased

60 Participants Needed

This trial tests if adjusting ventilator settings based on lung measurements can reduce deaths in ARDS patients, including those with COVID-19. The goal is to provide better breathing support without causing more lung damage.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

740 Participants Needed

Why Other Patients Applied

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50
While most studies in the medical literature that indicate "music" as an intervention may recognize its impact and capacity to decrease pain perception, anxiety, and/or its role in the regulation of cardiac and respiratory function in ICU patients, no identifiable studies have implemented entrained live music therapy protocols into clinical trials. Music therapy treatment is a non-pharmacological intervention that is individually tailored to the patient's needs and focuses on the assessment and intervention of a specific music application that is provided by a certified music therapist. Entrained music therapy focuses on a dynamic interaction between the patient and music therapist in which the music therapist attempts to promote relaxation and comfort through the patient's identified Song of Kin (SOK). This study measures the effects of live music therapy entrained to the vital signs of adult patients on duration of mechanical ventilation.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

178 Participants Needed

This is a Phase 2 multicenter, randomized, double-blinded, placebo-controlled study that will evaluate the safety and efficacy of host-directed therapeutics in hospitalized adults diagnosed with Acute Respiratory Distress Syndrome (ARDS) utilizing a platform trial design. Cohort A: Participants will be randomized to receive either a placebo or vilobelimab. This record describes the default procedures and analyses for Cohort A. Please see NCT06703073 for information on the BP-ARDS-P2-001 Master Protocol.

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

200 Participants Needed

The goal of this study is to compare two different ways of helping patients with a condition called sepsis who need help breathing using a machine called a ventilator. The investigators want to study which way of setting the ventilator is better for the lungs. Here are the main questions the investigators want to answer: 1. How does the amount of air in the lungs and the way it moves differ between the two ways? 2. How does the way air spreads out in different parts of the lungs differ between the two ways? In this study, the investigators will take special pictures of the lungs using a machine called a CT scan. The pictures will show us how much the lungs stretch and how much air is in different parts of the lungs. The investigators will compare two different ways of using the ventilator: one personalized for each patient based on their breathing, and another way that is commonly used. By comparing these two ways, the investigators hope to learn which one is better for helping patients with sepsis who need the ventilator. This information can help doctors make better decisions about how to care for these patients and improve their breathing.
No Placebo Group

Trial Details

Trial Status:Recruiting

12 Participants Needed

The overall purpose of this protocol is to identify subacute sepsis-associated cardiac disease in pediatric patients with cancer by CMR and evaluate the CMR findings during their follow-up. This will help inform heart failure management decision making. Evidence of dysfunction or elevated T2 values may inform adjustment of afterload reduction and beta blocker administration, and elevated ECV findings will suggest the need for increased surveillance for diastolic dysfunction. Primary Objectives: (Feasibility Phase) To determine the feasibility of cardiac MRI without anesthesia in the immediate post-sepsis period in children with cancer. CMR scanning will be completed within 10 days of presentation - this will allow us to ensure that possible hemodynamic or respiratory instability and renal dysfunction has resolved prior to transport to the MRI scanner during the most acute phase of illness. (Completion Phase) To estimate the frequency of subacute sepsis-associated cardiac disease, including myocardial inflammation and dysfunction, in the post-acute phase (within 10 days of presentation) of severe sepsis in children with cancer
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:9 - 25

20 Participants Needed

Fluid expansion with isotonic crystalloids is a first-line intervention in the treatment of patients with acute kidney injury (AKI). While it is generally accepted that the timely correction of kidney hypoperfusion will minimize the extent of injury as well as potentially facilitate recovery, there are potential harms involved in indiscriminate administration of intravenous fluids. Although anticipating fluid tolerance is part of the clinical evaluation of a patient for whom intravenous fluid therapy is considered, it has been suggested that using Point-Of-Care ultrasound (POCUS) may enable the early identification of patients with a high-risk of congestive complications and guide clinical decisions with greater precision\[1\]. However, it has not been shown that providing this information in the context of AKI result in a change in management or a prevention of complications. This single-center pilot randomized controlled trial aim to determine the feasibility of comparing a management including a POCUS evaluation of fluid tolerance to usual care in non-critically ill patients with AKI. In the intervention group, a POCUS evaluation will be performed and interpreted by experienced staff producing a report that will be presented to the attending care team. This assessment will be repeated 48-72 hours later. The primary aim of the study will be to establish the feasibility of this intervention. Secondary objectives will include determining the difference between the intervention arm and the control arm in relationship with fluid administration, diuretic use, evolution of kidney function, and intensification of care.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

80 Participants Needed

This will be a randomized, placebo-controlled, double-blinded, pilot trial with two parallel groups (1:1 ratio) receiving either dexmedetomidine (initial bolus of 1 mcg/kg over 30 min after induction, followed by an infusion rate of 0.3 mcg/kg/hr that will be stopped 30-45 minutes before the end of the surgery or upon reaching maximum dose of 2mcg/kg, whichever comes first) or placebo (normal saline as a bolus followed by maintenance infusion at the same rate of the intervention group). Dexmedetomidine is frequently administered in thoracic surgery. Using local data from the Brigham and Women's Hospital, dexmedetomidine was used in a third of the thoracic procedures performed over the past three years. However, there is no consensus as to the optimal protocol of administration, therefore clinical practice is highly heterogeneous (bolus versus continuous infusion) and mostly depends on the preferences of anesthesia providers. In our institution, the dose of dexmedetomidine is typically 0.5 mcg/kg but varies based on attending preferences and experience. Given the heterogenous practices in dexmedetomidine administration, one of the objectives is to assess the feasibility of adhering to a dexmedetomidine protocol using an initial loading dose of 1 mcg/kg over 30 minutes after induction followed by a continuous infusion of 0.3 mcg/kg/hr. The infusion will stop 30-45 minutes prior to the end of surgery or once a maximum dose of 2mcg/kg has been achieved, whichever comes first. The control group will receive normal saline (similar bolus followed by maintenance infusion at the same rate of the intervention group).

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

100 Participants Needed

Acute respiratory distress syndrome (ARDS) is when a person's lungs become inflamed, which can be caused by infection, trauma, surgery, blood transfusion, or burn. ARDS often leads to a situation where the person cannot breathe independently and needs machines' help. Once the lungs are inflamed, the small air sacs responsible for exchanging gases (i.e., ventilation) and the blood flow in the lungs (i.e., perfusion) can be affected. In the past, most research focused on studying ventilation physiology and how to help people breathe with machines. Less was done on perfusion because it requires imaging techniques such as computed tomography with intravenous contrast and radiation. One treatment option for low oxygen levels is inhaled nitric oxide (iNO), a gas that can dilate the lung blood vessels and improve oxygenation; however, it is not always clear whether this treatment will work. Electrical Impedance Tomography (EIT) is a bedside and accessible imaging technique that is radiation-free and non-invasive and can potentially detect changes in lung perfusion. EIT can perform multiple measurements; it is portable and accessible. This prospective interventional study aims to assess changes in regional blood perfusion in the lungs of patients with ARDS in response to iNO utilizing EIT. The main questions it aims to answer are: 1. If EIT can measure lung regional perfusion response to an iNO challenge of 20ppm for 15 minutes. 2. If EIT is comparable to dual-energy computed tomography (DECT), the gold-standard method to detect changes in regional lung perfusion. 3. If EIT can be an imaging marker to identify ARDS severity Participants will be divided into two cohorts: 1. Cohort 1 (n=60): Participants will be asked to be monitored by EIT before, during, and after the administration of iNO (20 ppm) for 15 minutes (OFF-ON-OFF) 2. Cohort 2 (N=10): Participants will be asked to be monitored by EIT and DECT before and during the administration of iNO (20 ppm) for 15 minutes (OFF-ON).
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

70 Participants Needed

Nitric Oxide for COVID-19

Boston, Massachusetts
The scientific community is in search for novel therapies that can help to face the ongoing epidemics of novel Coronavirus (SARS-Cov-2) originated in China in December 2019. At present, there are no proven interventions to prevent progression of the disease. Some preliminary data on SARS pneumonia suggest that inhaled Nitric Oxide (NO) could have beneficial effects on SARS-CoV-2 due to the genomic similarities between this two coronaviruses. In this study we will test whether inhaled NO therapy prevents progression in patients with mild to moderate COVID-19 disease.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting

70 Participants Needed

Ventilator associated events (VAE) is a quality metric defined by 48 hours of stability followed by 48 hours of escalation of ventilator settings within the ICU. VAE have been associated with poor outcomes and increases the cost of care, yet is not easy to avoid. Operationalizing all the standards of care known to improve outcomes of those requiring mechanical ventilation in the critical care environment requires a comprehensive approach. ICU teams are encouraged to follow best practice protocols to help liberate and prevent VAEs. Yet, compliance with protocols in most ICUs is suboptimal for multiple reasons. With the advent of computerized mechanical ventilators capable of streaming data from breath to breath and biomedical integration systems (BMDI) such as Capsule (UTMB's BMDI system), software systems have been developed to help identify variances in the standard of care. Automation in near real-time ventilator data feedback has been shown to reduce the incidences of VAEs. This quality improvement project will leverage Vyaire's Respiratory Knowledge Portal (RKP) to collect and store meaningful data regarding ventilator-associated events (VAE), alarm policy compliance, ventilator weaning, and lung protective analytics. Goals: 1. To collect quality metrics utilizing RKP from patients requiring mechanical ventilation over a 3-4-month period for a retrospective baseline analysis. 2. Provide the RKP tool to the ICU team to determine if the use of RKP's webportal and Messenger Zebra phone app improves quality of mechanical ventilation and outcomes. 3. To determine a return on investment (ROI) for a software system like RKP.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased
Age:< 100

800 Participants Needed

The current standard of care (SOC) for treatment of patients with acute respiratory distress syndrome (ARDS), inhalation injury, volume overload, and/or pulmonary dysfunction is mechanical ventilation (MV). However, these techniques are associated with several complications after prolonged use, including risk of infection, increased sedation requirements, pulmonary edema, ventilator-induced lung injury (VILI), barotrauma, and multi-organ failure. Extracorporeal life support (ECLS) has been used to successfully minimize, replace, or avoid the use of MV. This concept is critical as it permits ultra-lung protective MV settings, mobilization, early ambulation of patients, and timely extubation (when appropriate). Conventional ECLS typically requires blood flows of 3-6 L/min, and its cannula sizes range from 21-25 Fr. This is by definition "high-flow" as it constitutes near-complete extracorporeal circulation of patient's circulating blood volume. On the other hand, low-flow ECLS at 1-2.5 L/min has been shown to prevent deleterious shifts in pH and PaCO2 at a lower level of invasiveness, and its cannula sizes range from 19-20 Fr dual lumen cannulas (which are associated with less serial dilation). The investigators propose the use of a low-flow circuit to include the NovaLung system in conjunction with a smaller tubing set and cannula to enable earlier utilization of ECLS with less invasiveness and smaller catheters. Specifically, the study will either utilize the Crescent RA cannula (or equivalent dual-lumen cannula) or use a 15-25 Fr cannula, both with 3/8 tubing/step-down tubing, as needed, for our study. A femoral (fem)-femoral or femoral-internal jugular (IJ) approach may also be used. Carbon dioxide is six times more diffusible than oxygen across the membrane; thus, carbon dioxide transfers can occur with high efficiency at our targeted blood flows of 1-2.5L/min. Oxygen can still transfer at these blood flows, and low flow can improve oxygen levels to some degree. There are three benchtop-based manuscripts that suggest that low-flow ECMO is associated with a potential increase in factors that increase the risk of bleeding complications/circuit changes. However, the manuscripts either tested \<1 L/min blood flow rates, or the effect of cannula size was not considered. None of them included the biological component of endothelial interaction. Mitigating the risk of bleeding complications by will be completed by administering anticoagulants with a target PTT of 40-50 seconds, and by monitoring the patients and their coagulation panels closely. There may be less risk of circuit clotting in our study because of chosen flow rates (1-2.5 L/min).
No Placebo Group

Trial Details

Trial Status:Enrolling By Invitation
Trial Phase:Unphased
Age:18 - 65

30 Participants Needed

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do Acute Lung Injury clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Acute Lung Injury clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Acute Lung Injury trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Acute Lung Injury is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Acute Lung Injury medical study?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Acute Lung Injury clinical trials?

Most recently, we added Vilobelimab for Acute Respiratory Distress Syndrome, Innovative Therapies for Acute Respiratory Distress Syndrome and Paridiprubart for Acute Respiratory Distress Syndrome to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Terms of Service·Privacy Policy·Cookies·Security